log_softmax#
- ivy.log_softmax(x, /, *, axis=None, complex_mode='jax', out=None)[source]#
Apply the log_softmax function element-wise.
- Parameters:
x (
Union
[Array
,NativeArray
]) – Input array.axis (
Optional
[int
], default:None
) – The dimension log_softmax would be performed on. The default isNone
.complex_mode (
Literal
['split'
,'magnitude'
,'jax'
], default:'jax'
) – optional specifier for how to handle complex data types. Seeivy.func_wrapper.handle_complex_input
for more detail.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – The output array with log_softmax applied element-wise to input.
Examples
With
ivy.Array
input:>>> x = ivy.array([-1.0, -0.98]) >>> y = ivy.log_softmax(x) >>> print(y) ivy.array([-0.703, -0.683])
>>> x = ivy.array([1.0, 2.0, 3.0]) >>> y = ivy.log_softmax(x) >>> print(y) ivy.array([-2.41, -1.41, -0.408])
With
ivy.NativeArray
input:>>> x = ivy.native_array([1.5, 0.5, 1.0]) >>> y = ivy.log_softmax(x) >>> print(y) ivy.array([-0.68, -1.68, -1.18])
With
ivy.Container
input:>>> x = ivy.Container(a=ivy.array([1.5, 0.5, 1.0])) >>> y = ivy.log_softmax(x) >>> print(y) { a: ivy.array([-0.68, -1.68, -1.18]) }
>>> x = ivy.Container(a=ivy.array([1.0, 2.0]), b=ivy.array([0.4, -0.2])) >>> y = ivy.log_softmax(x) >>> print(y) { a: ivy.array([-1.31, -0.313]), b: ivy.array([-0.437, -1.04]) }
- Array.log_softmax(self, /, *, axis=-1, complex_mode='jax', out=None)[source]#
ivy.Array instance method variant of ivy.log_softmax. This method simply wraps the function, and so the docstring for ivy.log_softmax also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array.axis (
Optional
[int
], default:-1
) – the axis or axes along which the log_softmax should be computedcomplex_mode (
Literal
['split'
,'magnitude'
,'jax'
], default:'jax'
) – optional specifier for how to handle complex data types. Seeivy.func_wrapper.handle_complex_input
for more detail.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array with the log_softmax activation function applied element-wise.
Examples
>>> x = ivy.array([-1.0, -0.98, 2.3]) >>> y = x.log_softmax() >>> print(y) ivy.array([-3.37, -3.35, -0.0719])
>>> x = ivy.array([2.0, 3.4, -4.2]) >>> y = x.log_softmax(x) ivy.array([-1.62, -0.221, -7.82 ])
- Container.log_softmax(self, /, *, axis=-1, complex_mode='jax', key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#
ivy.Container instance method variant of ivy.log_softmax. This method simply wraps the function, and so the docstring for ivy.log_softmax also applies to this method with minimal changes.
- Parameters:
self (
Container
) – input container.axis (
Optional
[Container
], default:-1
) – the axis or axes along which the log_softmax should be computedcomplex_mode (
Literal
['split'
,'magnitude'
,'jax'
], default:'jax'
) – optional specifier for how to handle complex data types. Seeivy.func_wrapper.handle_complex_input
for more detail.key_chains (
Optional
[Union
[List
[str
],Dict
[str
,str
],Container
]], default:None
) – The key-chains to apply or not apply the method to. Default isNone
.to_apply (
Union
[bool
,Container
], default:True
) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default isTrue
.prune_unapplied (
Union
[bool
,Container
], default:False
) – Whether to prune key_chains for which the function was not applied. Default isFalse
.map_sequences (
Union
[bool
,Container
], default:False
) – Whether to also map method to sequences (lists, tuples). Default isFalse
.out (
Optional
[Container
], default:None
) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.
- Returns:
ret – a container with the log_softmax unit function applied element-wise.
Examples
>>> x = ivy.Container(a=ivy.array([-1.0, -0.98, 2.3])) >>> y = x.log_softmax() >>> print(y) { a: ivy.array([-3.37, -3.35, -0.0719]) }
>>> x = ivy.Container(a=ivy.array([1.0, 2.4]), b=ivy.array([-0.2, -1.0])) >>> y = x.log_softmax() >>> print(y) { a: ivy.array([-1.62, -0.22]), b: ivy.array([-0.371, -1.17]) }