eigvalsh#
- ivy.eigvalsh(x, /, *, UPLO='L', out=None)[source]#
Return the eigenvalues of a symmetric matrix (or a stack of symmetric matrices) x.
Note
The function
eig
will be added in a future version of the specification, as it requires complex number support, once complex numbers are supported, each square matrix must be Hermitian.Note
Whether an array library explicitly checks whether an input array is a symmetric matrix (or a stack of symmetric matrices) is implementation-defined.
- Parameters:
x (
Union
[Array
,NativeArray
]) – input array having shape (…, M, M) and whose innermost two dimensions form square matrices. Must have floating-point data type.UPLO (
str
, default:'L'
) – optional string being ‘L’ or ‘U’, specifying whether the calculation is done with the lower triangular part of x (‘L’, default) or the upper triangular part (‘U’).out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – an array containing the computed eigenvalues. The returned array must have shape (…, M) and and must have a real-valued floating-point data type whose precision matches the precision of
x
(e.g., ifx
iscomplex128
, then theeigenvalues
must befloat64
).
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.Examples
With
ivy.Array
inputs:>>> x = ivy.array([[[1.0,2.0],[2.0,1.0]]]) >>> y = ivy.eigvalsh(x) >>> print(y) ivy.array([[-1., 3.]])
>>> x = ivy.array([[[3.0,2.0],[2.0,3.0]]]) >>> y = ivy.zeros([1,2]) >>> ivy.eigvalsh(x, out=y) >>> print(y) ivy.array([[1., 5.]])
>>> x = ivy.array([[[3.0,2.0],[2.0,3.0]]]) >>> ivy.eigvalsh(x, out=x) >>> print(x) ivy.array([[1., 5.]])
>>> x = ivy.array([[[2.0,3.0,6.0],[3.0,4.0,5.0],[6.0,5.0,9.0]], ... [[1.0,1.0,1.0],[1.0,2.0,2.0],[1.0,2.0,2.0]]]) >>> y = ivy.eigvalsh(x, UPLO="U") >>> print(y) ivy.array([[-1.45033181e+00, 1.02829754e+00, 1.54220343e+01], [-1.12647155e-15, 4.38447177e-01, 4.56155300e+00]])
With
ivy.NativeArray
inputs:>>> x = ivy.native_array([[[1., 1., 2.], [1., 2., 1.], [1., 1., 2]]]) >>> y = ivy.eigvalsh(x) >>> print(y) ivy.array([[0.26794919, 1. , 3.7320509 ]])
With
ivy.Container
inputs:>>> x = ivy.Container(a=ivy.array([[[1.,2.,3.],[2.,4.,5.],[3.,5.,6.]]]), ... b=ivy.array([[[1.,1.,2.],[1.,2.,1.],[2.,1.,1.]]]), ... c=ivy.array([[[2.,2.,2.],[2.,3.,3.],[2.,3.,3.]]])) >>> y = ivy.eigvalsh(x) >>> print(y) { a: ivy.array([[-0.51572949, 0.17091519, 11.3448143]]), b: ivy.array([[-1., 1., 4.]]), c: ivy.array([[-8.88178420e-16, 5.35898387e-01, 7.46410179e+00]]) }
- Array.eigvalsh(self, /, *, UPLO='L', out=None)[source]#
ivy.Array instance method variant of ivy.eigvalsh. This method simply wraps the function, and so the docstring for ivy.eigvalsh also applies to this method with minimal changes.
- Parameters:
x – input array having shape (…, M, M) and whose innermost two dimensions form square matrices. Must have floating-point data type.
out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the computed eigenvalues. The returned array must have shape (…, M) and have the same data type as x.
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.Examples
With
ivy.Array
inputs:>>> x = ivy.array([[[1.0,2.0],[2.0,1.0]]]) >>> y = ivy.eigvalsh(x) >>> print(y) ivy.array([[-1., 3.]])
- Container.eigvalsh(self, /, *, UPLO='L', key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#
ivy.Container instance method variant of ivy.eigvalsh. This method simply wraps the function, and so the docstring for ivy.eigvalsh also applies to this method with minimal changes.
- Parameters:
self (
Container
) – Ivy container having shape(..., M, M)
and whose innermost two dimensions form square matrices. Should have a floating-point data type.key_chains (
Optional
[Union
[List
[str
],Dict
[str
,str
],Container
]], default:None
) – The key-chains to apply or not apply the method to. Default isNone
.to_apply (
Union
[bool
,Container
], default:True
) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default isTrue
.prune_unapplied (
Union
[bool
,Container
], default:False
) – Whether to prune key_chains for which the function was not applied. Default isFalse
.map_sequences (
Union
[bool
,Container
], default:False
) – Whether to also map method to sequences (lists, tuples). Default isFalse
.out (
Optional
[Container
], default:None
) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container
- Returns:
ret – a container containing the computed eigenvalues. The returned array must have shape (…, M) and have the same data type as x.
Examples
With
ivy.Container
inputs:>>> x = ivy.Container(a=ivy.array([[[1.,2.],[2.,1.]]]), ... b=ivy.array([[[2.,4.],[4.,2.]]])) >>> y = ivy.eigvalsh(x) >>> print(y) { a: ivy.array([[-1., 3.]]), b: ivy.array([[-2., 6.]]) }