erf#
- ivy.erf(x, /, *, out=None)[source]#
Compute the Gauss error function of
x
element-wise.- Parameters:
- Return type:
- Returns:
ret – The Gauss error function of x.
Examples
With
ivy.Array
inputs:>>> x = ivy.array([0, 0.3, 0.7]) >>> y = ivy.erf(x) >>> print(y) ivy.array([0., 0.32862675, 0.67780113])
>>> x = ivy.array([0.1, 0.3, 0.4, 0.5]) >>> ivy.erf(x, out=x) >>> print(x) ivy.array([0.11246294, 0.32862675, 0.42839241, 0.52050018])
>>> x = ivy.array([[0.15, 0.28], [0.41, 1.75]]) >>> y = ivy.zeros((2, 2)) >>> ivy.erf(x, out=y) >>> print(y) ivy.array([[0.16799599, 0.30787992], [0.43796915, 0.98667163]])
With
ivy.Container
input:>>> x = ivy.Container(a=ivy.array([0.9, 1.1, 1.2]), b=ivy.array([1.3, 1.4, 1.5])) >>> y = ivy.erf(x) >>> print(y) { a: ivy.array([0.79690808, 0.88020504, 0.91031402]), b: ivy.array([0.934008, 0.95228523, 0.96610528]) }
- Array.erf(self, *, out=None)[source]#
ivy.Array instance method variant of ivy.erf. This method simply wraps the function, and so the docstring for ivy.erf also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array to compute exponential for.out (
Optional
[Array
], default:None
) – optional output, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the Gauss error of
self
.
Examples
>>> x = ivy.array([0, 0.3, 0.7, 1.0]) >>> x.erf() ivy.array([0., 0.328, 0.677, 0.842])
- Container.erf(self, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#
ivy.Container instance method variant of ivy.erf. This method simply wraps thefunction, and so the docstring for ivy.erf also applies to this method with minimal changes.
- Parameters:
self (
Container
) – input container to compute exponential for.key_chains (
Optional
[Union
[List
[str
],Dict
[str
,str
],Container
]], default:None
) – The key-chains to apply or not apply the method to. Default isNone
.to_apply (
Union
[bool
,Container
], default:True
) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default isTrue
.prune_unapplied (
Union
[bool
,Container
], default:False
) – Whether to prune key_chains for which the function was not applied. Default isFalse
.map_sequences (
Union
[bool
,Container
], default:False
) – Whether to also map method to sequences (lists, tuples). Default isFalse
.out (
Optional
[Container
], default:None
) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container
- Returns:
ret – a container containing the Gauss error of
self
.
Examples
>>> x = ivy.Container(a=ivy.array([-0.25, 4, 1.3]), ... b=ivy.array([12, -3.5, 1.234])) >>> y = x.erf() >>> print(y) { a: ivy.array([-0.27632612, 1., 0.934008]), b: ivy.array([1., -0.99999928, 0.91903949]) }