trunc_divide#
- ivy.trunc_divide(x1, x2, /, *, out=None)[source]#
Perform element-wise integer division of the inputs rounding the results towards zero.
- Parameters:
x1 (
Union
[float
,Array
,NativeArray
]) – dividend input array. Should have a numeric data type.x2 (
Union
[float
,Array
,NativeArray
]) – divisor input array. Must be compatible with x1 (see Broadcasting). Should have a numeric data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – an array containing the element-wise results. The returned array must have a floating-point data type determined by Type Promotion Rules.
Examples
With
ivy.Array
inputs:>>> x1 = ivy.array([2., 7., 9.]) >>> x2 = ivy.array([3., -4., 0.6]) >>> y = ivy.trunc_divide(x1, x2) >>> print(y) ivy.array([ 0., -1., 14.])
- Array.trunc_divide(self, x2, /, *, out=None)[source]#
ivy.Array instance method variant of ivy.trunc_divide. This method simply wraps the function, and so the docstring for ivy.trunc_divide also applies to this method with minimal changes.
- Parameters:
self (
Array
) – dividend input array. Should have a real-valued data type.x2 (
Union
[Array
,NativeArray
]) – divisor input array. Must be compatible withself
(see broadcasting). Should have a real-valued data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the element-wise results. The returned array must have a data type determined by type-promotion.
Examples
With
ivy.Array
inputs:>>> x1 = ivy.array([2., 7., 9.]) >>> x2 = ivy.array([2., -2., 2.]) >>> y = x1.trunc_divide(x2) >>> print(y) ivy.array([ 1., -3., 4.])
- Container.trunc_divide(self, x2, /, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#
ivy.Container instance method variant of ivy.trunc_divide. This method simply wraps the function, and so the docstring for ivy.trunc_divide also applies to this method with minimal changes.
- Parameters:
self (
Container
) – dividend input array or container. Should have a real-valued data type.x2 (
Union
[Container
,Array
,NativeArray
]) – divisor input array or container. Must be compatible withself
(see broadcasting). Should have a real-valued data type.key_chains (
Optional
[Union
[List
[str
],Dict
[str
,str
],Container
]], default:None
) – The key-chains to apply or not apply the method to. Default isNone
.to_apply (
Union
[bool
,Container
], default:True
) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default isTrue
.prune_unapplied (
Union
[bool
,Container
], default:False
) – Whether to prune key_chains for which the function was not applied. Default isFalse
.map_sequences (
Union
[bool
,Container
], default:False
) – Whether to also map method to sequences (lists, tuples). Default isFalse
.out (
Optional
[Container
], default:None
) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container
- Returns:
ret – a container containing the element-wise results. The returned container must have a data type determined by type-promotion.
Examples
With
ivy.Container
inputs:>>> x1 = ivy.Container(a=ivy.array([12., 3.5, 6.3]), b=ivy.array([3., 1., 9.])) >>> x2 = ivy.Container(a=ivy.array([1., 2.3, -3]), b=ivy.array([2.4, 3., -2.])) >>> y = x1.trunc_divide(x2) >>> print(y) { a: ivy.array([12., 1., -2.]), b: ivy.array([1., 0., -4.]) }