binary_cross_entropy#
- ivy.binary_cross_entropy(true, pred, /, *, from_logits=False, epsilon=0.0, reduction='mean', pos_weight=None, axis=None, out=None)[source]#
Compute the binary cross entropy loss.
- Parameters:
true (
Union
[Array
,NativeArray
]) – input array containing true labels.pred (
Union
[Array
,NativeArray
]) – input array containing Predicted labels.from_logits (
bool
, default:False
) – Whether pred is expected to be a logits tensor. By default, we assume that pred encodes a probability distribution.epsilon (
float
, default:0.0
) – a float in [0.0, 1.0] specifying the amount of smoothing when calculating the loss. If epsilon is0
, no smoothing will be applied. Default:0
.reduction (
str
, default:'mean'
) –'none'
: No reduction will be applied to the output.'mean'
: The output will be averaged.'sum'
: The output will be summed. Default:'none'
.pos_weight (
Optional
[Union
[Array
,NativeArray
]], default:None
) – a weight for positive examples. Must be an array with length equal to the number of classes.axis (
Optional
[int
], default:None
) – Axis along which to compute crossentropy.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – The binary cross entropy between the given distributions.
Examples
With
ivy.Array
input:>>> x = ivy.array([0, 1, 0, 0]) >>> y = ivy.array([0.2, 0.8, 0.3, 0.8]) >>> z = ivy.binary_cross_entropy(x, y) >>> print(z) ivy.array(0.60309976)
>>> x = ivy.array([[0, 1, 1, 0]]) >>> y = ivy.array([[2.6, 6.2, 3.7, 5.3]]) >>> z = ivy.binary_cross_entropy(x, y, reduction='mean') >>> print(z) ivy.array(7.6666193)
>>> x = ivy.array([[0, 1, 1, 0]]) >>> y = ivy.array([[2.6, 6.2, 3.7, 5.3]]) >>> pos_weight = ivy.array([1, 2, 3, 4]) >>> z = ivy.binary_cross_entropy(x, y, pos_weight=pos_weight, from_logits=True) ivy.array(2.01348412)
>>> x = ivy.array([[0, 1, 1, 0]]) >>> y = ivy.array([[2.6, 6.2, 3.7, 5.3]]) >>> pos_weight = ivy.array([1, 2, 3, 4]) >>> z = ivy.binary_cross_entropy(x, y, pos_weight=pos_weight, from_logits=True, reduction='sum', axis=1) >>> print(z) ivy.array([8.05393649])
>>> x = ivy.array([[0, 1, 1, 0]]) >>> y = ivy.array([[2.6, 6.2, 3.7, 5.3]]) >>> z = ivy.binary_cross_entropy(x, y, reduction='none', epsilon=0.5) >>> print(z) ivy.array([[11.49992943, 3.83330965, 3.83330965, 11.49992943]])
>>> x = ivy.array([[0, 1, 0, 0]]) >>> y = ivy.array([[0.6, 0.2, 0.7, 0.3]]) >>> z = ivy.binary_cross_entropy(x, y, epsilon=1e-3) >>> print(z) ivy.array(1.02136981)
With
ivy.NativeArray
input:>>> x = ivy.native_array([0, 1, 0, 1]) >>> y = ivy.native_array([0.2, 0.7, 0.2, 0.6]) >>> z = ivy.binary_cross_entropy(x, y) >>> print(z) ivy.array(0.32844672)
With a mix of
ivy.Array
andivy.NativeArray
inputs:>>> x = ivy.array([0, 0, 1, 1]) >>> y = ivy.native_array([0.1, 0.2, 0.8, 0.6]) >>> z = ivy.binary_cross_entropy(x, y) >>> print(z) ivy.array(0.26561815)
With
ivy.Container
input:>>> x = ivy.Container(a=ivy.array([1, 0, 0]),b=ivy.array([0, 0, 1])) >>> y = ivy.Container(a=ivy.array([0.6, 0.2, 0.3]),b=ivy.array([0.8, 0.2, 0.2])) >>> z = ivy.binary_cross_entropy(x, y) >>> print(z) { a: ivy.array(0.36354783), b: ivy.array(1.14733934) }
With a mix of
ivy.Array
andivy.Container
inputs:>>> x = ivy.array([1 , 1, 0]) >>> y = ivy.Container(a=ivy.array([0.7, 0.8, 0.2])) >>> z = ivy.binary_cross_entropy(x, y) >>> print(z) { a: ivy.array(0.26765382) }
Instance Method Examples
Using
ivy.Array
instance method:>>> x = ivy.array([1, 0, 0, 0]) >>> y = ivy.array([0.8, 0.2, 0.2, 0.2]) >>> z = ivy.binary_cross_entropy(x, y) >>> print(z) ivy.array(0.22314337)
- Array.binary_cross_entropy(self, pred, /, *, from_logits=False, epsilon=0.0, reduction='mean', pos_weight=None, axis=None, out=None)[source]#
ivy.Array instance method variant of ivy.binary_cross_entropy. This method simply wraps the function, and so the docstring for ivy.binary_cross_entropy also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array containing true labels.pred (
Union
[Array
,NativeArray
]) – input array containing Predicted labels.from_logits (
bool
, default:False
) – Whether pred is expected to be a logits tensor. By default, we assume that pred encodes a probability distribution.epsilon (
float
, default:0.0
) – a float in [0.0, 1.0] specifying the amount of smoothing when calculating the loss. If epsilon is0
, no smoothing will be applied. Default:0
.reduction (
str
, default:'mean'
) –'none'
: No reduction will be applied to the output.'mean'
: The output will be averaged.'sum'
: The output will be summed. Default:'none'
.pos_weight (
Optional
[Union
[Array
,NativeArray
]], default:None
) – a weight for positive examples. Must be an array with length equal to the number of classes.axis (
Optional
[int
], default:None
) – Axis along which to compute crossentropy.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – The binary cross entropy between the given distributions.
Examples
>>> x = ivy.array([1 , 1, 0]) >>> y = ivy.array([0.7, 0.8, 0.2]) >>> z = x.binary_cross_entropy(y) >>> print(z) ivy.array(0.26765382)
- Container.binary_cross_entropy(self, pred, /, *, from_logits=False, epsilon=0.0, reduction='mean', pos_weight=None, axis=None, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#
ivy.Container instance method variant of ivy.binary_cross_entropy. This method simply wraps the function, and so the docstring for ivy.binary_cross_entropy also applies to this method with minimal changes.
- Parameters:
self (
Container
) – input container containing true labels.pred (
Union
[Container
,Array
,NativeArray
]) –input array or container containing Predicted labels. from_logits
Whether pred is expected to be a logits tensor. By default, we assume that pred encodes a probability distribution.
epsilon (
Union
[float
,Container
], default:0.0
) – a float in [0.0, 1.0] specifying the amount of smoothing when calculating the loss. If epsilon is0
, no smoothing will be applied. Default:0
.reduction (
Union
[str
,Container
], default:'mean'
) –'none'
: No reduction will be applied to the output.'mean'
: The output will be averaged.'sum'
: The output will be summed. Default:'none'
.pos_weight (
Optional
[Union
[Array
,NativeArray
,Container
]], default:None
) – a weight for positive examples. Must be an array with length equal to the number of classes.axis (
Optional
[Union
[int
,Container
]], default:None
) – Axis along which to compute crossentropy.key_chains (
Optional
[Union
[List
[str
],Dict
[str
,str
],Container
]], default:None
) – The key-chains to apply or not apply the method to. Default isNone
.to_apply (
Union
[bool
,Container
], default:True
) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default isTrue
.prune_unapplied (
Union
[bool
,Container
], default:False
) – Whether to prune key_chains for which the function was not applied. Default isFalse
.map_sequences (
Union
[bool
,Container
], default:False
) – Whether to also map method to sequences (lists, tuples). Default isFalse
.out (
Optional
[Container
], default:None
) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container
- Returns:
ret – The binary cross entropy between the given distributions.
Examples
>>> x = ivy.Container(a=ivy.array([1, 0, 0]),b=ivy.array([0, 0, 1])) >>> y = ivy.Container(a=ivy.array([0.6, 0.2, 0.3]),b=ivy.array([0.8, 0.2, 0.2])) >>> z = x.binary_cross_entropy(y) >>> print(z) { a: ivy.array(0.36354783), b: ivy.array(1.14733934) }