softshrink#
- ivy.softshrink(x, /, *, lambd=0.5, out=None)[source]#
Apply the softshrink function element-wise.
- Parameters:
- Return type:
- Returns:
ret – an array containing the softshrink activation of each element in
x
.
Examples
With
ivy.Array
input: >>> x = ivy.array([-1.0, 1.0, 2.0]) >>> y = ivy.softshrink(x) >>> print(y) ivy.array([-0.5, 0.5, 1.5])>>> x = ivy.array([-1.0, 1.0, 2.0]) >>> y = x.softshrink() >>> print(y) ivy.array([-0.5, 0.5, 1.5])
>>> x = ivy.array([[-1.3, 3.8, 2.1], [1.7, 4.2, -6.6]]) >>> y = ivy.softshrink(x) >>> print(y) ivy.array([[-0.79999995, 3.29999995, 1.59999991], [ 1.20000005, 3.69999981, -6.0999999 ]])
- Array.softshrink(self, /, *, lambd=0.5, out=None)[source]#
ivy.Array instance method variant of ivy.softshrink. This method simply wraps the function, and so the docstring for ivy.softshrink also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array.lambd (
float
, default:0.5
) – the value of the lower bound of the linear region range.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array with the softshrink activation function applied element-wise.
Examples
>>> x = ivy.array([-1., 0., 1.]) >>> y = x.softshrink() >>> print(y) ivy.array([-0.5, 0. , 0.5]) >>> x = ivy.array([-1., 0., 1.]) >>> y = x.softshrink(lambd=1.0) >>> print(y) ivy.array([0., 0., 0.])
- Container.softshrink(self, /, *, lambd=0.5, key_chains=None, to_apply=False, prune_unapplied=True, map_sequences=False, out=None)[source]#
Apply the soft shrinkage function element-wise.
- Parameters:
self (
Container
) – Input container.lambd (
Container
, default:0.5
) – Lambda value for soft shrinkage calculation.key_chains (
Optional
[Union
[List
[str
],Dict
[str
,str
],Container
]], default:None
) – The key-chains to apply or not apply the method to.to_apply (
Union
[bool
,Container
], default:False
) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped.prune_unapplied (
Union
[bool
,Container
], default:True
) – Whether to prune key_chains for which the function was not applied.map_sequences (
Union
[bool
,Container
], default:False
) – Whether to also map method to sequences (lists, tuples).out (
Optional
[Container
], default:None
) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container
- Returns:
ret – Container with soft shrinkage applied to the leaves.
Examples
>>> import ivy.numpy as np >>> x = ivy.Container(a=np.array([1., -2.]), b=np.array([0.4, -0.2])) >>> y = ivy.Container.softshrink(x) >>> print(y) { a: ivy.array([0.5, -1.5]), b: ivy.array([0., 0.]) }