stanh#
- ivy.stanh(x, /, *, alpha=1.7159, beta=0.67, out=None)[source]#
Compute the scaled hyperbolic tangent (tanh) activation.
The scaled tanh activation function is defined as: out = alpha * tanh(beta * x)
- Parameters:
x (
Union
[Array
,NativeArray
]) – input array.alpha (
float
, default:1.7159
) – The scaling parameter for the output. Determines the amplitude of the tanh function. Default: 1.7159beta (
float
, default:0.67
) – The scaling parameter for the input. Determines the slope of the tanh function. Default: 0.67out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – The input array after applying the scaled tanh activation.
Examples
With
ivy.Array
input:>>> x = ivy.array([22.]) >>> y = ivy.scaled_tanh(x) >>> y ivy.array([1.71589994]))
>>> x = ivy.array([4.0, 7.0]) >>> y = ivy.scaled_tanh(x, alpha=1.2, beta=5) >>> y ivy.array([1.20000005, 1.20000005])
With
ivy.Container
input:>>> x = ivy.Container(a=ivy.array([1.2, -1.2]), b=ivy.array([4.4, -2.2])) >>> y = ivy.scaled_tanh(x) >>> y { a: ivy.array([1.14324772, -1.14324772]), b: ivy.array([1.70648694, -1.54488957]) } >>> x = ivy.Container(a=ivy.array([1.2]), b=ivy.array([4.4])) >>> y = ivy.scaled_tanh(x, alpha=0.2, beta=0.5) >>> y { a: ivy.array([0.10740992]), b: ivy.array([0.19514863]) }