linear#
- ivy.linear(x, weight, /, *, bias=None, out=None)[source]#
Apply a linear transformation to the incoming data: y = x * t(weight) + bias. The operation also supports batching of the weight matrices. This is useful if a batch of different network parameters are to be represented.
- Parameters:
x (
Union
[Array
,NativeArray
]) – The input x to compute linear transformation on. [outer_batch_shape,inner_batch_shape,in_features]weight (
Union
[Array
,NativeArray
]) – The weight matrix. [outer_batch_shape,out_features,in_features]bias (
Optional
[Union
[Array
,NativeArray
]], default:None
) – The bias vector, default isNone
. [outer_batch_shape,out_features]out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – Result array of the linear transformation. [outer_batch_shape,inner_batch_shape,out_features]
Both the description and the type hints above assumes an array input for simplicity,
but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.
Examples
With
ivy.Array
input:>>> x = ivy.array([1., 2., 3.]) >>> w = ivy.array([[1., 0., 0.]]) >>> y = ivy.linear(x, w) >>> print(y) ivy.array([1.])
>>> x = ivy.array([[0.666, -0.4269, 1.911]]) >>> w = ivy.array([[1., 0., 0.], [0., 0., 1.]]) >>> y = ivy.zeros((1, 2)) >>> ivy.linear(x, w, out=y) >>> print(y) ivy.array([[0.666, 1.91 ]])
>>> x = ivy.array([[1.546, 5.234, 6.487], ... [0.157, 5.753, 4.52], ... [5.165, 3.159, 7.101]]) >>> w = ivy.array([[1.545, 2.547, 3.124], ... [5.852, 8.753, 6.963]]) >>> b = ivy.array([-1., 1.]) >>> y = ivy.zeros((3, 2)) >>> ivy.linear(x, w, bias=b, out=y) >>> print(y) ivy.array([[ 34.98495483, 101.0293808 ], [ 28.0159359 , 83.74752808], [ 37.20942307, 108.3205719 ]])
With
ivy.Container
input:>>> x = ivy.Container(a=ivy.array([[1., 2., 3.], ... [4., 5., 6.]]), ... b=ivy.array([1.1, 2.2, 3.3])) >>> w = ivy.Container(a=ivy.array([[1., 2., 3.], ... [-1., 1., 2.]]), ... b=ivy.array([[0., -1., 1.], ... [0., 1., 1.]])) >>> b = ivy.Container(a=ivy.array([1., -1.]), b=ivy.array([1., 1.])) >>> y = ivy.linear(x, w, bias=b) >>> print(y) { a: ivy.array([[15., 6.], [33., 12.]]), b: ivy.array([2.1, 6.5]) }
With a mix of
ivy.Array
andivy.Container
inputs:>>> x = ivy.Container(a=ivy.array([[1.1, 2.2, 3.3], ... [11., 22., 33.]]), ... b=ivy.array([[1.245, 0.278, 4.105], ... [7., 13., 17.]])) >>> w = ivy.array([[1., 2., 3.], ... [4., 5., 6.], ... [7., 8., 9.]]) >>> b = ivy.Container(a=ivy.array([1., 0., -1.]), ... b=ivy.array([1., 1., 0.])) >>> ivy.linear(x, w, bias=b, out=x) >>> print(x) { a: ivy.array([[16.4, 35.2, 54.], [155., 352., 549.]]), b: ivy.array([[15.1, 32., 47.9], [85., 196., 306.]]) }
- Array.linear(self, weight, /, *, bias=None, out=None)[source]#
ivy.Array instance method variant of ivy.linear. This method simply wraps the function, and so the docstring for ivy.linear also applies to this method with minimal changes.
- Parameters:
self (
Array
) – The input array to compute linear transformation on. [outer_batch_shape,inner_batch_shape,in_features]weight (
Union
[Array
,NativeArray
]) – The weight matrix. [outer_batch_shape,out_features,in_features]bias (
Optional
[Union
[Array
,NativeArray
]], default:None
) – The bias vector, default isNone
. [outer_batch_shape,out_features]out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – Result array of the linear transformation. [outer_batch_shape,inner_batch_shape,out_features]
Examples
>>> x = ivy.array([[1.1, 2.2, 3.3], [4.4, 5.5, 6.6], [7.7, 8.8, 9.9]]) >>> w = ivy.array([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]]) >>> b = ivy.array([1., 0., -1.]) >>> y = x.linear(w, bias=b) >>> print(y) ivy.array([[ 16.4, 35.2, 54. ], [ 36.2, 84.7, 133. ], [ 56. , 134. , 212. ]])
- Container.linear(self, weight, /, *, bias=None, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#
ivy.Container instance method variant of ivy.linear. This method simply wraps the function, and so the docstring for ivy.linear also applies to this method with minimal changes.
- Parameters:
self (
Container
) – The input container to compute linear transformation on. [outer_batch_shape,inner_batch_shape,in_features]weight (
Union
[Array
,NativeArray
,Container
]) – The weight matrix. [outer_batch_shape,out_features,in_features]bias (
Optional
[Union
[Array
,NativeArray
,Container
]], default:None
) – The bias vector, default isNone
. [outer_batch_shape,out_features]key_chains (
Optional
[Union
[List
[str
],Dict
[str
,str
],Container
]], default:None
) – The key-chains to apply or not apply the method to. Default isNone
.to_apply (
Union
[bool
,Container
], default:True
) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default isTrue
.prune_unapplied (
Union
[bool
,Container
], default:False
) – Whether to prune key_chains for which the function was not applied. Default isFalse
.map_sequences (
Union
[bool
,Container
], default:False
) – Whether to also map method to sequences (lists, tuples). Default isFalse
.out (
Optional
[Container
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container
- Returns:
ret – Result array of the linear transformation. [outer_batch_shape,inner_batch_shape,out_features]
Examples
>>> x = ivy.Container(a=ivy.array([[1.1, 2.2, 3.3], ... [11., 22., 33.]]), ... b=ivy.array([[1.245, 0.278, 4.105], ... [7., 13., 17.]])) >>> w = ivy.array([[1., 2., 3.], ... [4., 5., 6.], ... [7., 8., 9.]]) >>> b = ivy.Container(a=ivy.array([1., 0., -1.]), ... b=ivy.array([1., 1., 0.])) >>> y = x.linear(w, bias=b, out=x) >>> print(y) { a: ivy.array([[16.39999962, 35.19999695, 54.], [155., 352., 549.]]), b: ivy.array([[15.11600018, 32., 47.88399887], [85., 196., 306.]]) }