threshold#
- ivy.threshold(x, /, *, threshold, value, out=None)[source]#
Apply the threshold function element-wise.
- Parameters:
- Return type:
- Returns:
ret – an array containing the threshold activation of each element in
x
.
Examples
With
ivy.Array
input: >>> x = ivy.array([-1.0, 1.0, 2.0]) >>> y = ivy.threshold(x,value=0.0, threshold=1.5) >>> print(y) ivy.array([0., 0., 2.])>>> x = ivy.array([-1.0, 1.0, 2.0]) >>> x.threshold(value=0.0, threshold=1.5) >>> print(y) ivy.array([0., 0., 2.])
>>> x = ivy.array([[-1.3, 3.8, 2.1], [1.7, 4.2, -6.6]]) >>> y = ivy.threshold(x, value=0.0, threshold=1.5) >>> print(y) ivy.array([[0. , 3.79999995, 2.0999999 ], [1.70000005, 4.19999981, 0. ]])
- Array.threshold(self, /, *, threshold, value, out=None)[source]#
ivy.Array instance method variant of ivy.threshold. This method simply wraps the function, and so the docstring for ivy.threshold also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array.threshold (
Union
[int
,float
]) – threshold value for thresholding operation.value (
Union
[int
,float
]) – value to replace with if thresholding condition is not met.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array with the thresholding function applied element-wise.
Examples
>>> x = ivy.array([-1., 0., 1.]) >>> y = x.hreshold(threshold=0.5, value=0.0) >>> print(y) ivy.array([0.5, 0.5 , 1. ])
- Container.threshold(self, /, *, threshold, value, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#
ivy.Container instance method variant of ivy.threshold. This method simply wraps the function, and so the docstring for ivy.threshold also applies to this method with minimal changes.
- Parameters:
self (
Container
) – input container.threshold (
Container
) – threshold value for thresholding operation.value (
Container
) – value to replace with if thresholding condition is not met.key_chains (
Optional
[Union
[List
[str
],Dict
[str
,str
],Container
]], default:None
) – The key-chains to apply or not apply the method to.to_apply (
Union
[bool
,Container
], default:True
) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped.prune_unapplied (
Union
[bool
,Container
], default:False
) – Whether to prune key_chains for which the function was not applied.map_sequences (
Union
[bool
,Container
], default:False
) – Whether to also map method to sequences (lists, tuples).out (
Optional
[Container
], default:None
) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container
- Returns:
ret – a container with the threshold activation unit function applied element-wise.
Examples
>>> x = ivy.Container(a=ivy.array([1.0, -1.2]), b=ivy.array([0.4, -0.2])) >>> y = x.threshold(threshold=0.5, value=0.0) >>> print(y) { a: ivy.array([1., 0.]), b: ivy.array([0., 0.]) }