Random#
- ivy.bernoulli(probs, *, logits=None, shape=None, device=None, dtype=None, seed=None, out=None)[source]#
Draws samples from Bernoulli distribution parameterized by probs or logits (but not both)
- Parameters:
logits (
Optional
[Union
[float
,NativeArray
,Array
]], default:None
) – An N-D Array representing the log-odds of a 1 event. Each entry in the Array parameterizes an independent Bernoulli distribution where the probability of an event is sigmoid (logits). Only one of logits or probs should be passed in.probs (
Union
[float
,Array
,NativeArray
]) – An N-D Array representing the probability of a 1 event. Each entry in the Array parameterizes an independent Bernoulli distribution. Only one of logits or probs should be passed inshape (
Optional
[Union
[Shape
,NativeShape
]], default:None
) – If the given shape is, e.g ‘(m, n, k)’, then ‘m * n * k’ samples are drawn. (Default value = ‘None’, where ‘ivy.shape(logits)’ samples are drawn)device (
Optional
[Union
[Device
,NativeDevice
]], default:None
) – device on which to create the array ‘cuda:0’, ‘cuda:1’, ‘cpu’ etc. (Default value = None).dtype (
Optional
[Union
[Dtype
,NativeDtype
]], default:None
) – output array data type. Ifdtype
isNone
, the output array data type will be the default floating-point data type. DefaultNone
seed (
Optional
[int
], default:None
) – A python integer. Used to create a random seed distributionout (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – Drawn samples from the Bernoulli distribution
- ivy.beta(a, b, /, *, shape=None, device=None, dtype=None, seed=None, out=None)[source]#
Return an array filled with random values sampled from a beta distribution.
- Parameters:
a (
Union
[float
,NativeArray
,Array
]) – Alpha parameter of the beta distribution.b (
Union
[float
,NativeArray
,Array
]) – Beta parameter of the beta distribution.shape (
Optional
[Union
[Shape
,NativeShape
]], default:None
) – If the given shape is, e.g(m, n, k)
, thenm * n * k
samples are drawn Can only be specified whenmean
andstd
are numeric values, else exception will be raised. Default isNone
, where a single value is returned.device (
Optional
[Union
[Device
,NativeDevice
]], default:None
) – device on which to create the array. ‘cuda:0’, ‘cuda:1’, ‘cpu’ etc. (Default value = None).dtype (
Optional
[Union
[Dtype
,NativeDtype
]], default:None
) – output array data type. Ifdtype
isNone
, the output array data type will be the default floating point data type. DefaultNone
seed (
Optional
[int
], default:None
) – A python integer. Used to create a random seed distributionout (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – Returns an array with the given shape filled with random values sampled from a beta distribution.
- ivy.dirichlet(alpha, /, *, size=None, dtype=None, seed=None, out=None)[source]#
Draw size samples of dimension k from a Dirichlet distribution. A Dirichlet- distributed random variable can be seen as a multivariate generalization of a Beta distribution. The Dirichlet distribution is a conjugate prior of a multinomial distribution in Bayesian inference.
- Parameters:
alpha (
Union
[Array
,NativeArray
,float
,Sequence
[float
]]) – Sequence of floats of length ksize (
Optional
[Union
[Shape
,NativeShape
]], default:None
) – optional int or tuple of ints, Output shape. If the given shape is, e.g., (m, n), then m * n * k samples are drawn. Default is None, in which case a vector of length k is returned.dtype (
Optional
[Union
[Dtype
,NativeDtype
]], default:None
) – output array data type. Ifdtype
isNone
, the output array data type will be the default floating-point data type. DefaultNone
seed (
Optional
[int
], default:None
) – A python integer. Used to create a random seed distributionout (
Optional
[Array
], default:None
) – optional output array, for writing the result to.
- Return type:
- Returns:
ret – The drawn samples, of shape (size, k).
Examples
>>> alpha = [1.0, 2.0, 3.0] >>> ivy.dirichlet(alpha) ivy.array([0.10598304, 0.21537054, 0.67864642])
>>> alpha = [1.0, 2.0, 3.0] >>> ivy.dirichlet(alpha, size = (2,3)) ivy.array([[[0.48006698, 0.07472073, 0.44521229], [0.55479872, 0.05426367, 0.39093761], [0.19531053, 0.51675832, 0.28793114]],
- [[0.12315625, 0.29823365, 0.5786101 ],
[0.15564976, 0.50542368, 0.33892656], [0.1325352 , 0.44439589, 0.42306891]]])
- ivy.gamma(alpha, beta, /, *, shape=None, device=None, dtype=None, seed=None, out=None)[source]#
Return an array filled with random values sampled from a gamma distribution.
- Parameters:
alpha (
Union
[float
,NativeArray
,Array
]) – Alpha parameter of the gamma distribution.beta (
Union
[float
,NativeArray
,Array
]) – Beta parameter of the gamma distribution.shape (
Optional
[Union
[float
,NativeArray
,Array
]], default:None
) – Shape parameter of the gamma distribution.device (
Optional
[Union
[Device
,NativeDevice
]], default:None
) – device on which to create the array. ‘cuda:0’, ‘cuda:1’, ‘cpu’ etc. (Default value = None).dtype (
Optional
[Union
[Dtype
,NativeDtype
]], default:None
) – output array data type. Ifdtype
isNone
, the output array data type will be the default floating point data type. DefaultNone
seed (
Optional
[int
], default:None
) – A python integer. Used to create a random seed distributionout (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – Returns an array filled with random values sampled from a gamma distribution.
- ivy.poisson(lam, *, shape=None, device=None, dtype=None, seed=None, fill_value=0, out=None)[source]#
Draws samples from a poisson distribution.
- Parameters:
lam (
Union
[float
,Array
,NativeArray
]) – Rate parameter(s) describing the poisson distribution(s) to sample. It must have a shape that is broadcastable to the requested shape.shape (
Optional
[Union
[Shape
,NativeShape
]], default:None
) – If the given shape is, e.g ‘(m, n, k)’, then ‘m * n * k’ samples are drawn. (Default value = ‘None’, where ‘ivy.shape(lam)’ samples are drawn)device (
Optional
[Union
[Device
,NativeDevice
]], default:None
) – device on which to create the array ‘cuda:0’, ‘cuda:1’, ‘cpu’ etc. (Default value = None).dtype (
Optional
[Union
[Dtype
,NativeDtype
]], default:None
) – output array data type. Ifdtype
isNone
, the output array data type will be the default floating-point data type. DefaultNone
seed (
Optional
[int
], default:None
) – A python integer. Used to create a random seed distribution.fill_value (
Optional
[Union
[int
,float
]], default:0
) – if lam is negative, fill the output array with this value on that specific dimension.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
- ret
Drawn samples from the poisson distribution
Examples
>>> lam = [1.0, 2.0, 3.0] >>> ivy.poisson(lam) ivy.array([1., 4., 4.])
>>> lam = [1.0, 2.0, 3.0] >>> ivy.poisson(lam, shape = (2,3)) ivy.array([[0., 2., 2.], [1., 2., 3.]])
This should have hopefully given you an overview of the random submodule, if you have any questions, please feel free to reach out on our discord!