gamma#
- ivy.gamma(alpha, beta, /, *, shape=None, device=None, dtype=None, seed=None, out=None)[source]#
Return an array filled with random values sampled from a gamma distribution.
- Parameters:
alpha (
Union
[float
,NativeArray
,Array
]) – Alpha parameter of the gamma distribution.beta (
Union
[float
,NativeArray
,Array
]) – Beta parameter of the gamma distribution.shape (
Optional
[Union
[float
,NativeArray
,Array
]], default:None
) – Shape parameter of the gamma distribution.device (
Optional
[Union
[Device
,NativeDevice
]], default:None
) – device on which to create the array. ‘cuda:0’, ‘cuda:1’, ‘cpu’ etc. (Default value = None).dtype (
Optional
[Union
[Dtype
,NativeDtype
]], default:None
) – output array data type. Ifdtype
isNone
, the output array data type will be the default floating point data type. DefaultNone
seed (
Optional
[int
], default:None
) – A python integer. Used to create a random seed distributionout (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – Returns an array filled with random values sampled from a gamma distribution.
- Array.gamma(self, beta, /, *, shape=None, device=None, dtype=None, seed=None, out=None)[source]#
ivy.Array instance method variant of ivy.gamma. This method simply wraps the function, and so the docstring for ivy.gamma also applies to this method with minimal changes.
- Parameters:
self (
Array
) – Input Array and the first parameter of the gamma distribution.beta (
Union
[int
,Array
,NativeArray
]) – The second parameter of the gamma distribution.shape (
Optional
[Union
[Shape
,NativeShape
]], default:None
) – If the given shape is, e.g ‘(m, n, k)’, then ‘m * n * k’ samples are drawn. (Default value = ‘None’, where ‘ivy.shape(logits)’ samples are drawn)device (
Optional
[Union
[Device
,NativeDevice
]], default:None
) – device on which to create the array.dtype (
Optional
[Union
[Dtype
,NativeDtype
]], default:None
) – output array data type. Ifdtype
isNone
, the output array data type will be the default data type. DefaultNone
seed (
Optional
[int
], default:None
) – A python integer. Used to create a random seed distributionout (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – Drawn samples from the parameterized gamma distribution with the shape of the input array.
- Container.gamma(self, beta, /, *, shape=None, device=None, dtype=None, seed=None, out=None)[source]#
ivy.Container method variant of ivy.gamma. This method simply wraps the function, and so the docstring for ivy.gamma also applies to this method with minimal changes.
- Parameters:
self (
Container
) – First parameter of the distribution.beta (
Union
[int
,float
,Container
,Array
,NativeArray
]) – Second parameter of the distribution.shape (
Optional
[Union
[Shape
,NativeShape
,Container
]], default:None
) – If the given shape is, e.g ‘(m, n, k)’, then ‘m * n * k’ samples are drawn. (Default value = ‘None’, where ‘ivy.shape(logits)’ samples are drawn)device (
Optional
[Union
[str
,Container
]], default:None
) – device on which to create the array ‘cuda:0’, ‘cuda:1’, ‘cpu’ etc. (Default value = None).dtype (
Optional
[Union
[str
,Container
]], default:None
) – output array data type. Ifdtype
isNone
, the output array data type will be the default floating-point data type. DefaultNone
seed (
Optional
[Union
[int
,Container
]], default:None
) –A python integer. Used to create a random seed distribution out
Optional output container, for writing the result to. It must have a shape that the inputs broadcast to.
- Returns:
ret – Drawn samples from the parameterized gamma distribution with the shape of the input Container.