selu#
- ivy.selu(x, /, *, out=None)[source]#
Apply the scaled exponential linear unit function element-wise.
- Parameters:
- Return type:
- Returns:
ret – an array containing the scaled exponential linear unit activation of each element in
x
.
Examples
With
ivy.Array
input: >>> x = ivy.array([-1., 0., 1., 2., 3., 4., 5., 6., 7.]) >>> y = ivy.selu(x) >>> print(y) ivy.array([-1.11133075, 0. , 1.05070102, 2.10140204, 3.15210295,4.20280409, 5.25350523, 6.30420589, 7.35490704])
>>> x = ivy.array([-1., 0., 1., 2., 3., 4., 5., 6., 7.]) >>> y = ivy.zeros(9) >>> ivy.selu(x, out = y) >>> print(y) ivy.array([-1.11133075, 0. , 1.05070102, 2.10140204, 3.15210295, 4.20280409, 5.25350523, 6.30420589, 7.35490704])
With
ivy.Container
input: >>> x = ivy.Container(a=ivy.array([-3., -2., -1., 0., 1., 2., 3., 4., 5.]), … b=ivy.array([1., 2., 3., 4., 5., 6., 7., 8., 9.]) … ) >>> x = ivy.selu(x, out=x) >>> print(x) {- a: ivy.array([-1.6705687, -1.52016652, -1.11133075, 0., 1.05070102,
2.10140204, 3.15210295, 4.20280409, 5.25350523]),
- b: ivy.array([1.05070102, 2.10140204, 3.15210295, 4.20280409, 5.25350523,
6.30420589, 7.35490704, 8.40560818, 9.45630932])
}
- Array.selu(self, /, *, out=None)[source]#
Apply the scaled exponential linear unit function element-wise.
- Parameters:
self – input array
out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the scaled exponential linear unit activation of each element in input.
Examples
With
ivy.Array
input:>>> x = ivy.array([-1., 0., 1., 2., 3., 4., 5., 6., 7.]) >>> y = x.selu() >>> print(y) ivy.array([-1.11133075, 0., 1.05070102, 2.10140204, 3.15210295, 4.20280409, 5.25350523, 6.30420589, 7.35490704])
>>> x = ivy.array([-1., 0., 1., 2., 3., 4., 5., 6., 7.]) >>> y = ivy.zeros(9) >>> x.selu(out = y) >>> print(y) ivy.array([-1.11133075, 0., 1.05070102, 2.10140204, 3.15210295, 4.20280409, 5.25350523, 6.30420589, 7.35490704])
- Container.selu(self, /, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#
ivy.Container instance method variant of ivy.selu. This method simply wraps the function, and so the docstring for ivy.selu also applies to this method with minimal changes.
- Parameters:
self (
Container
) – input container.key_chains (
Optional
[Union
[List
[str
],Dict
[str
,str
],Container
]], default:None
) – The key-chains to apply or not apply the method to. Default isNone
.to_apply (
Union
[bool
,Container
], default:True
) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default isTrue
.prune_unapplied (
Union
[bool
,Container
], default:False
) – Whether to prune key_chains for which the function was not applied. Default isFalse
.map_sequences (
Union
[bool
,Container
], default:False
) – Whether to also map method to sequences (lists, tuples). Default isFalse
.out (
Optional
[Container
], default:None
) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container
- Returns:
ret – a container with the scaled exponential linear unit activation function applied element-wise.
Examples
>>> x = ivy.Container(a=ivy.array([1.0, -1.2]), b=ivy.array([0.4, -0.2])) >>> y = x.selu() >>> print(y) { a: ivy.array([1.05070102, -1.22856998]), b: ivy.array([0.42028043, -0.31868932]) }