thresholded_relu#
- ivy.thresholded_relu(x, /, *, threshold=0, out=None)[source]#
Apply the rectified linear unit function with custom threshold.
- Parameters:
- Return type:
- Returns:
ret – an array containing the rectified linear unit activation of each element in
x
. with customthreshold
.
Examples
With
ivy.Array
input:>>> x = ivy.array([-1., 0., 1.]) >>> y = ivy.thresholded_relu(x, threshold=0.5) >>> print(y) ivy.array([0., 0. , 1.])
>>> x = ivy.array([1.5, 0.7, -2.4]) >>> y = ivy.zeros(3) >>> ivy.thresholded_relu(x, threshold=1, out = y) >>> print(y) ivy.array([ 1.5, 0., 0.])
With
ivy.Container
input:>>> x = ivy.Container(a=ivy.array([1.0, -1.2]), b=ivy.array([0.2, 0.6])) >>> x = ivy.thresholded_relu(x, threshold=0.5) >>> print(x) { a: ivy.array([1., 0.]), b: ivy.array([0., 0.6]) }
- Array.thresholded_relu(self, /, *, threshold=0, out=None)[source]#
ivy.Array instance method variant of ivy.thresholded_relu. This method simply wraps the function, and so the docstring for ivy.thresholded_relu also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array.threshold (
Union
[int
,float
], default:0
) – threshold value above which the activation is linear. Default:0
.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array with the relu activation function applied element-wise with custom threshold.
Examples
>>> x = ivy.array([-1., .2, 1.]) >>> y = x.thresholded_relu(threshold=0.5) >>> print(y) ivy.array([0., 0., 1.])
- Container.thresholded_relu(self, /, *, threshold=0, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#
ivy.Container instance method variant of ivy.thresholded_relu. This method simply wraps the function, and so the docstring for ivy.thresholded_relu also applies to this method with minimal changes.
- Parameters:
self (
Container
) – input container.threshold (
Union
[int
,float
,Container
], default:0
) – threshold value above which the activation is linear. Default:0
.key_chains (
Optional
[Union
[List
[str
],Dict
[str
,str
],Container
]], default:None
) – The key-chains to apply or not apply the method to. Default isNone
.to_apply (
Union
[bool
,Container
], default:True
) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default isTrue
.prune_unapplied (
Union
[bool
,Container
], default:False
) – Whether to prune key_chains for which the function was not applied. Default isFalse
.map_sequences (
Union
[bool
,Container
], default:False
) – Whether to also map method to sequences (lists, tuples). Default isFalse
.out (
Optional
[Container
], default:None
) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container
- Returns:
ret – a container with the rectified linear activation unit function applied element-wise with custom threshold.
Examples
>>> x = ivy.Container(a=ivy.array([1.0, -1.2]), b=ivy.array([0.4, -0.2])) >>> y = x.thresholded_relu(threshold=0.5) >>> print(y) { a: ivy.array([1., 0.]), b: ivy.array([0., 0.]) }