Linear algebra#
- ivy.cholesky(x, /, *, upper=False, out=None)[source]#
Compute the cholesky decomposition of the x matrix.
- Parameters:
x (
Union
[Array
,NativeArray
]) – input array having shape (…, M, M) and whose innermost two dimensions form square symmetric positive-definite matrices. Should have a floating-point data type.upper (
bool
, default:False
) – If True, the result must be the upper-triangular Cholesky factor U. If False, the result must be the lower-triangular Cholesky factor L. Default:False
.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – an array containing the Cholesky factors for each square matrix. If upper is False, the returned array must contain lower-triangular matrices; otherwise, the returned array must contain upper-triangular matrices. The returned array must have a floating-point data type determined by Type Promotion Rules and must have the same shape as x.
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.Examples
With
ivy.Array
input:>>> x = ivy.array([[4.0, 1.0, 2.0, 0.5, 2.0], ... [1.0, 0.5, 0.0, 0.0, 0.0], ... [2.0, 0.0, 3.0, 0.0, 0.0], ... [0.5, 0.0, 0.0, 0.625, 0.0], ... [2.0, 0.0, 0.0, 0.0, 16.0]]) >>> l = ivy.cholesky(x, upper='false') >>> print(l) ivy.array([[ 2. , 0.5 , 1. , 0.25, 1. ], [ 0. , 0.5 , -1. , -0.25, -1. ], [ 0. , 0. , 1. , -0.5 , -2. ], [ 0. , 0. , 0. , 0.5 , -3. ], [ 0. , 0. , 0. , 0. , 1. ]])
>>> x = ivy.array([[4.0, 1.0, 2.0, 0.5, 2.0], ... [1.0, 0.5, 0.0, 0.0, 0.0], ... [2.0, 0.0, 3.0, 0.0, 0.0], ... [0.5, 0.0, 0.0, 0.625, 0.0], ... [2.0, 0.0, 0.0, 0.0, 16.0]]) >>> y = ivy.zeros([5,5]) >>> ivy.cholesky(x, upper='false', out=y) >>> print(y) ivy.array([[ 2. , 0.5 , 1. , 0.25, 1. ], [ 0. , 0.5 , -1. , -0.25, -1. ], [ 0. , 0. , 1. , -0.5 , -2. ], [ 0. , 0. , 0. , 0.5 , -3. ], [ 0. , 0. , 0. , 0. , 1. ]])
>>> x = ivy.array([[4.0, 1.0, 2.0, 0.5, 2.0], ... [1.0, 0.5, 0.0, 0.0, 0.0], ... [2.0, 0.0, 3.0, 0.0, 0.0], ... [0.5, 0.0, 0.0, 0.625, 0.0], ... [2.0, 0.0, 0.0, 0.0, 16.0]]) >>> ivy.cholesky(x, upper='false', out=x) >>> print(x) ivy.array([[ 2. , 0.5 , 1. , 0.25, 1. ], [ 0. , 0.5 , -1. , -0.25, -1. ], [ 0. , 0. , 1. , -0.5 , -2. ], [ 0. , 0. , 0. , 0.5 , -3. ], [ 0. , 0. , 0. , 0. , 1. ]])
>>> x = ivy.array([[1., -2.], [2., 5.]]) >>> u = ivy.cholesky(x, upper='false') >>> print(u) ivy.array([[ 1., -2.], [ 0., 1.]])
With
ivy.Container
input:>>> x = ivy.Container(a=ivy.array([[3., -1],[-1., 3.]]), ... b=ivy.array([[2., 1.],[1., 1.]])) >>> y = ivy.cholesky(x, upper='false') >>> print(y) { a: ivy.array([[1.73, -0.577], [0., 1.63]]), b: ivy.array([[1.41, 0.707], [0., 0.707]]) }
With multiple
ivy.Container
inputs:>>> x = ivy.Container(a=ivy.array([[3., -1],[-1., 3.]]), ... b=ivy.array([[2., 1.],[1., 1.]])) >>> upper = ivy.Container(a=1, b=-1) >>> y = ivy.cholesky(x, upper='false') >>> print(y) { a: ivy.array([[1.73, -0.577], [0., 1.63]]), b: ivy.array([[1.41, 0.707], [0., 0.707]]) }
With a mix of
ivy.Array
andivy.Container
inputs:>>> x = ivy.array([[1., -2.], [2., 5.]]) >>> upper = ivy.Container(a=1, b=-1) >>> y = ivy.cholesky(x, upper='false') >>> print(y) ivy.array([[ 1., -2.], [ 0., 1.]])
- ivy.cross(x1, x2, /, *, axisa=-1, axisb=-1, axisc=-1, axis=None, out=None)[source]#
Return cross product of 3-element vectors.
If x1 and x2 are multi- dimensional arrays (i.e., both have a rank greater than 1), then the cross- product of each pair of corresponding 3-element vectors is independently computed.
- Parameters:
x1 (
Union
[Array
,NativeArray
]) – first input array. Should have a numeric data type.x2 (
Union
[Array
,NativeArray
]) –second input array. Must be compatible with
x1
for all non-compute axes. The size of the axis over which to compute the cross product must be the same size as the respective axis inx
. Should have a numeric data type.Note
The compute axis (dimension) must not be broadcasted.
axis (
Optional
[int
], default:None
) – the axis (dimension) of x1 and x2 containing the vectors for which to compute the cross product. Must be an integer on the interval``[-N, N)``, whereN
is the rank (number of dimensions) of the shape. If specified as a negative integer, the function must determine the axis along which to compute the cross product by counting backward from the last dimension (where-1
refers to the last dimension). By default, the function must compute the cross product over the last axis. Default:-1
.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – an array containing the cross products. The returned array must have a data type determined by Type Promotion Rules.
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.Examples
With
ivy.Array
inputs:>>> x = ivy.array([1., 0., 0.]) >>> y = ivy.array([0., 1., 0.]) >>> z = ivy.cross(x, y) >>> print(z) ivy.array([0., 0., 1.])
With
ivy.Container
inputs:>>> x = ivy.Container(a=ivy.array([5., 0., 0.]), ... b=ivy.array([0., 0., 2.])) >>> y = ivy.Container(a=ivy.array([0., 7., 0.]), ... b=ivy.array([3., 0., 0.])) >>> z = ivy.cross(x,y) >>> print(z) { a: ivy.array([0., 0., 35.]), b: ivy.array([0., 6., 0.]) }
With a combination of
ivy.Array
andivy.Container
inputs:>>> x = ivy.array([9., 0., 3.]) >>> y = ivy.Container(a=ivy.array([1., 1., 0.]), ... b=ivy.array([1., 0., 1.])) >>> z = ivy.cross(x,y) >>> print(z) { a: ivy.array([-3., 3., 9.]), b: ivy.array([0., -6., 0.]) }
- ivy.det(x, /, *, out=None)[source]#
Return the determinant of a square matrix (or a stack of square matrices)``x``.
- Parameters:
x (
Union
[Array
,NativeArray
]) – input array having shape(..., M, M)
and whose innermost two dimensions form square matrices. Should have a floating-point data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – if
x
is a two-dimensional array, a zero-dimensional array containing the determinant; otherwise,a non-zero dimensional array containing the determinant for each square matrix. The returned array must have the same data type asx
.
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.Examples
With
ivy.Array
input:>>> x = ivy.array([[2.,4.],[6.,7.]]) >>> y = ivy.det(x) >>> print(y) ivy.array(-10.)
>>> x = ivy.array([[3.4,-0.7,0.9],[6.,-7.4,0.],[-8.5,92,7.]]) >>> y = ivy.det(x) >>> print(y) ivy.array(293.46997)
With
ivy.NativeArray
input:>>> x = ivy.native_array([[3.4,-0.7,0.9],[6.,-7.4,0.],[-8.5,92,7.]]) >>> y = ivy.det(x) >>> print(y) ivy.array(293.46997)
With
ivy.Container
input:>>> x = ivy.Container(a = ivy.array([[3., -1.], [-1., 3.]]) , ... b = ivy.array([[2., 1.], [1., 1.]])) >>> y = ivy.det(x) >>> print(y) {a:ivy.array(8.),b:ivy.array(1.)}
- ivy.diag(x, /, *, k=0, out=None)[source]#
Return the specified diagonals of the input array, or an array with the input array’s elements as diagonals.
- Parameters:
x (
Union
[Array
,NativeArray
]) – An array with rank >= 1.k (
int
, default:0
) – An integer that controls which diagonal to consider. Positive value means superdiagonal, 0 refers to the main diagonal, and negative value means subdiagonal.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – If x is a 1-D array, the function returns a 2-D square array with the elements of input as diagonals. If x is a 2-D array, the function returns a 1-D array with the diagonal elements of x.
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.Examples
With
ivy.Array
inputs:>>> x = ivy.array([[0, 1, 2], >>> [3, 4, 5], >>> [6, 7, 8]]) >>> ivy.diag(x) ivy.array([0, 4, 8])
>>> x = ivy.array([[0, 1, 2], >>> [3, 4, 5], >>> [6, 7, 8]]) >>> ivy.diag(x, k=1) ivy.array([1, 5])
>>> x = ivy.array([[0, 1, 2], >>> [3, 4, 5], >>> [6, 7, 8]]) >>> ivy.diag(x, k=-1) ivy.array([3, 7])
>>> x = ivy.array([[0, 1, 2], >>> [3, 4, 5], >>> [6, 7, 8]]) >>> ivy.diag(ivy.diag(x)) ivy.array([[0, 0, 0], [0, 4, 0], [0, 0, 8]])
- ivy.diagonal(x, /, *, offset=0, axis1=-2, axis2=-1, out=None)[source]#
Return the specified diagonals of a matrix (or a stack of matrices)
x
.- Parameters:
x (
Union
[Array
,NativeArray
]) – input array having shape(..., M, N)
and whose innermost two dimensions formMxN
matrices.offset (
int
, default:0
) – offset specifying the off-diagonal relative to the main diagonal. -offset = 0
: the main diagonal. -offset > 0
: off-diagonal above the main diagonal. -offset < 0
: off-diagonal below the main diagonal. Default: 0.axis1 (
int
, default:-2
) – axis to be used as the first axis of the 2-D sub-arrays from which the diagonals should be taken. Defaults to first axis (-2).axis2 (
int
, default:-1
) – axis to be used as the second axis of the 2-D sub-arrays from which the diagonals should be taken. Defaults to second axis (-1).out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – an array containing the diagonals and whose shape is determined by removing the last two dimensions and appending a dimension equal to the size of the resulting diagonals. The returned array must have the same data type as
x
.
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.Examples
With
ivy.Array
inputs:>>> x = ivy.array([[1., 2.], ... [3., 4.]])
>>> d = ivy.diagonal(x) >>> print(d) ivy.array([1., 4.])
>>> x = ivy.array([[[1., 2.], ... [3., 4.]], ... [[5., 6.], ... [7., 8.]]]) >>> d = ivy.diagonal(x) >>> print(d) ivy.array([[1., 4.], [5., 8.]])
>>> x = ivy.array([[1., 2.], ... [3., 4.]])
>>> d = ivy.diagonal(x, offset=1) >>> print(d) ivy.array([2.])
>>> x = ivy.array([[0, 1, 2], ... [3, 4, 5], ... [6, 7, 8]]) >>> d = ivy.diagonal(x, offset=-1, axis1=0) >>> print(d) ivy.array([3, 7])
>>> x = ivy.array([[[ 0, 1, 2], ... [ 3, 4, 5], ... [ 6, 7, 8]], ... [[ 9, 10, 11], ... [12, 13, 14], ... [15, 16, 17]], ... [[18, 19, 20], ... [21, 22, 23], ... [24, 25, 26]]]) >>> d = ivy.diagonal(x, offset=1, axis1=-3) >>> print(d) ivy.array([[1, 11], [4, 14], [7, 17]])
>>> x = ivy.array([[[0, 1], ... [2, 3]], ... [[4, 5], ... [6, 7]]]) >>> d = ivy.diagonal(x, offset=0, axis1=0, axis2=1) >>> print(d) ivy.array([[0, 6], [1, 7]])
>>> x = ivy.array([[[1., 2.], ... [3., 4.]], ... [[5., 6.], ... [7., 8.]]]) >>> d = ivy.diagonal(x, offset=1, axis1=0, axis2=1) >>> print(d) ivy.array([[3.], [4.]])
>>> x = ivy.array([[1., 2.], ... [3., 4.]]) >>> d = ivy.diagonal(x) >>> print(d) ivy.array([1., 4.])
>>> x = ivy.array([[[ 0, 1, 2], ... [ 3, 4, 5], ... [ 6, 7, 8]], ... [[ 9, 10, 11], ... [12, 13, 14], ... [15, 16, 17]], ... [[18, 19, 20], ... [21, 22, 23], ... [24, 25, 26]]]) >>> d = ivy.diagonal(x, offset=1, axis1=1, axis2=-1) >>> print(d) ivy.array([[ 1, 5], [10, 14], [19, 23]])
>>> x = ivy.array([[0, 1, 2], ... [3, 4, 5], ... [6, 7, 8]]) >>> d = ivy.diagonal(x) >>> print(d) ivy.array([0, 4, 8])
With
ivy.Container
inputs:>>> x = ivy.Container( ... a = ivy.array([[7, 1, 2], ... [1, 3, 5], ... [0, 7, 4]]), ... b = ivy.array([[4, 3, 2], ... [1, 9, 5], ... [7, 0, 6]]) ... ) >>> d = ivy.diagonal(x) >>> print(d) { a: ivy.array([7, 3, 4]), b: ivy.array([4, 9, 6]) }
- ivy.eig(x, /, *, out=None)[source]#
Return an eigendecomposition x = QLQᵀ of a symmetric matrix (or a stack of symmetric matrices)
x
, whereQ
is an orthogonal matrix (or a stack of matrices) andL
is a vector (or a stack of vectors).Note
The function
eig
currently behaves likeeigh
, as it requires complex number support, once complex numbers are supported, x does not need to be a complex Hermitian or real symmetric matrix.- Parameters:
x (
Union
[Array
,NativeArray
]) – input array having shape(..., M, M)
and whose innermost two dimensions form square matrices. Must have a floating-point data type.- Return type:
Tuple
[Union
[Array
,NativeArray
]]- Returns:
ret – a namedtuple (
eigenvalues
,eigenvectors
) whosefirst element must have the field name
eigenvalues
(corresponding toL
above) and must be an array consisting of computed eigenvalues. The array containing the eigenvalues must have shape(..., M)
.second element have have the field name
eigenvectors
(corresponding toQ
above) and must be an array where the columns of the inner most matrices contain the computed eigenvectors. These matrices must be orthogonal. The array containing the eigenvectors must have shape(..., M, M)
.Each returned array must have the same floating-point data type as
x
.
.. note:: – Eigenvalue sort order is left unspecified and is thus implementation-dependent.
- ivy.eigh(x, /, *, UPLO='L', out=None)[source]#
Return an eigendecomposition x = QLQᵀ of a symmetric matrix (or a stack of symmetric matrices)
x
, whereQ
is an orthogonal matrix (or a stack of matrices) andL
is a vector (or a stack of vectors).Note
The function
eig
will be added in a future version of the specification, as it requires complex number support, once complex numbers are supported, each square matrix must be Hermitian.Note
Whether an array library explicitly checks whether an input array is a symmetric matrix (or a stack of symmetric matrices) is implementation-defined.
- Parameters:
x (
Union
[Array
,NativeArray
]) – input array having shape(..., M, M)
and whose innermost two dimensions form square matrices. Must have a floating-point data type.- Return type:
Tuple
[Union
[Array
,NativeArray
]]- Returns:
ret – a namedtuple (
eigenvalues
,eigenvectors
) whosefirst element must have the field name
eigenvalues
(corresponding to \(\operatorname{diag}\Lambda\) above) and must be an array consisting of computed eigenvalues. The array containing the eigenvalues must have shape(..., M)
and must have a real-valued floating-point data type whose precision matches the precision ofx
(e.g., ifx
iscomplex128
, then theeigenvalues
must befloat64
).second element have have the field name
eigenvectors
(corresponding toQ
above) and must be an array where the columns of the inner most matrices contain the computed eigenvectors. These matrices must be orthogonal. The array containing the eigenvectors must have shape(..., M, M)
.Each returned array must have the same floating-point data type as
x
.
.. note:: – Eigenvalue sort order is left unspecified and is thus implementation-dependent.
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.Examples
With
ivy.Array
input:>>> x = ivy.array([[1., 2.],[2., 5.]]) >>> eigenvalues, eigenvectors = ivy.eigh(x) >>> print(eigenvalues) ivy.array([0.17157288, 5.82842731]) >>> print(eigenvectors) ivy.array([[-0.9238795 , 0.38268343], [ 0.38268343, 0.9238795 ]])
>>> x = ivy.array([[1., 2.], [2., 5.]]) >>> eigenvalues, eigenvectors = ivy.zeros(len(x)), ivy.zeros(x.shape) >>> ivy.eigh(x, out=(eigenvalues, eigenvectors)) >>> print(eigenvalues) ivy.array([0.17157288, 5.82842731]) >>> print(eigenvectors) ivy.array([[-0.9238795 , 0.38268343], [ 0.38268343, 0.9238795 ]])
With
ivy.Container
input:>>> x = ivy.Container( ... a = ivy.native_array([[1., 2., 0.], [3., 4., 5.], [1., 5., 9]]), ... b = ivy.array([[2., 4., 6.], [3., 5., 7.], [0., 0.8, 2.9]])) >>> eigenvalues, eigenvectors = ivy.eigh(x, UPLO = 'U') >>> print(eigenvalues) { a: ivy.array([-0.78930789, 2.59803128, 12.19127655]), b: ivy.array([-4.31213903, -0.63418275, 14.84632206]) } >>> print(eigenvectors) { a: ivy.array([[0.70548367, -0.70223427, 0.09570674], [-0.63116378, -0.56109613, 0.53554028], [0.32237405, 0.43822157, 0.83906901]]), b: ivy.array([[0.50766778, 0.71475857, 0.48103389], [0.3676433, -0.68466955, 0.62933773], [-0.77917379, 0.14264561, 0.61036086]]) }
- ivy.eigvalsh(x, /, *, UPLO='L', out=None)[source]#
Return the eigenvalues of a symmetric matrix (or a stack of symmetric matrices) x.
Note
The function
eig
will be added in a future version of the specification, as it requires complex number support, once complex numbers are supported, each square matrix must be Hermitian.Note
Whether an array library explicitly checks whether an input array is a symmetric matrix (or a stack of symmetric matrices) is implementation-defined.
- Parameters:
x (
Union
[Array
,NativeArray
]) – input array having shape (…, M, M) and whose innermost two dimensions form square matrices. Must have floating-point data type.UPLO (
str
, default:'L'
) – optional string being ‘L’ or ‘U’, specifying whether the calculation is done with the lower triangular part of x (‘L’, default) or the upper triangular part (‘U’).out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – an array containing the computed eigenvalues. The returned array must have shape (…, M) and and must have a real-valued floating-point data type whose precision matches the precision of
x
(e.g., ifx
iscomplex128
, then theeigenvalues
must befloat64
).
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.Examples
With
ivy.Array
inputs:>>> x = ivy.array([[[1.0,2.0],[2.0,1.0]]]) >>> y = ivy.eigvalsh(x) >>> print(y) ivy.array([[-1., 3.]])
>>> x = ivy.array([[[3.0,2.0],[2.0,3.0]]]) >>> y = ivy.zeros([1,2]) >>> ivy.eigvalsh(x, out=y) >>> print(y) ivy.array([[1., 5.]])
>>> x = ivy.array([[[3.0,2.0],[2.0,3.0]]]) >>> ivy.eigvalsh(x, out=x) >>> print(x) ivy.array([[1., 5.]])
>>> x = ivy.array([[[2.0,3.0,6.0],[3.0,4.0,5.0],[6.0,5.0,9.0]], ... [[1.0,1.0,1.0],[1.0,2.0,2.0],[1.0,2.0,2.0]]]) >>> y = ivy.eigvalsh(x, UPLO="U") >>> print(y) ivy.array([[-1.45033181e+00, 1.02829754e+00, 1.54220343e+01], [-1.12647155e-15, 4.38447177e-01, 4.56155300e+00]])
With
ivy.NativeArray
inputs:>>> x = ivy.native_array([[[1., 1., 2.], [1., 2., 1.], [1., 1., 2]]]) >>> y = ivy.eigvalsh(x) >>> print(y) ivy.array([[0.26794919, 1. , 3.7320509 ]])
With
ivy.Container
inputs:>>> x = ivy.Container(a=ivy.array([[[1.,2.,3.],[2.,4.,5.],[3.,5.,6.]]]), ... b=ivy.array([[[1.,1.,2.],[1.,2.,1.],[2.,1.,1.]]]), ... c=ivy.array([[[2.,2.,2.],[2.,3.,3.],[2.,3.,3.]]])) >>> y = ivy.eigvalsh(x) >>> print(y) { a: ivy.array([[-0.51572949, 0.17091519, 11.3448143]]), b: ivy.array([[-1., 1., 4.]]), c: ivy.array([[-8.88178420e-16, 5.35898387e-01, 7.46410179e+00]]) }
- ivy.inner(x1, x2, /, *, out=None)[source]#
Return the inner product of two vectors
x1
andx2
.- Parameters:
x1 (
Union
[Array
,NativeArray
]) – first one-dimensional input array of size N. Should have a numeric data type. a(N,) array_like First input vector. Input is flattened if not already 1-dimensional.x2 (
Union
[Array
,NativeArray
]) – second one-dimensional input array of size M. Should have a numeric data type. b(M,) array_like Second input vector. Input is flattened if not already 1-dimensional.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – a two-dimensional array containing the inner product and whose shape is (N, M). The returned array must have a data type determined by Type Promotion Rules.
Both the description and the type hints above assumes an array input for
simplicity, but this function is *nestable, and therefore also accepts*
ivy.Container
instances in place of any of the arguments.
Examples
Matrices of identical shapes
>>> x = ivy.array([[1., 2.], [3., 4.]]) >>> y = ivy.array([[5., 6.], [7., 8.]]) >>> d = ivy.inner(x, y) >>> print(d) ivy.array([[17., 23.], [39., 53.]])
# Matrices of different shapes
>>> x = ivy.array([[1., 2.], [3., 4.], [5., 6.]]) >>> y = ivy.array([[5., 6.], [7., 8.]]) >>> d = ivy.inner(x, y) >>> print(d) ivy.array([[17., 23.], [39., 53.], [61., 83.]])
# 3D matrices
>>> x = ivy.array([[[1., 2.], [3., 4.]], ... [[5., 6.], [7., 8.]]]) >>> y = ivy.array([[[9., 10.], [11., 12.]], ... [[13., 14.], [15., 16.]]]) >>> d = ivy.inner(x, y) >>> print(d) ivy.array([[[[ 29., 35.], [ 41., 47.]], [[ 67., 81.], [ 95., 109.]]], [[[105., 127.], [149., 171.]], [[143., 173.], [203., 233.]]]])
- ivy.inv(x, /, *, adjoint=False, out=None)[source]#
Return the multiplicative inverse of a square matrix (or a stack of square matrices)
x
.- Parameters:
x (
Union
[Array
,NativeArray
]) – input array having shape(..., M, M)
and whose innermost two dimensions form square matrices. Should have a floating-point data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – an array containing the multiplicative inverses. The returned array must have a floating-point data type determined by type-promotion and must have the same shape as
x
.
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.Examples
With
ivy.Array
inputs:>>> x = ivy.array([[1.0, 2.0], [3.0, 4.0]]) >>> y = ivy.zeros((2, 2)) >>> ivy.inv(x, out=y) >>> print(y) ivy.array([[-2., 1.],[1.5, -0.5]])
>>> x = ivy.array([[1.0, 2.0], [5.0, 5.0]]) >>> ivy.inv(x, out=x) >>> print(x) ivy.array([[-1., 0.4],[1., -0.2]])
>>> x = ivy.array([[[1.0, 2.0],[3.0, 4.0]], ... [[1.0, 3.0], [3.0, 5.0]]]) >>> y = ivy.inv(x) >>> print(y) ivy.array([[[-2., 1.],[1.5, -0.5]], [[-1.25, 0.75],[0.75, -0.25]]])
With
ivy.Container
inputs>>> x = ivy.Container(a=ivy.array([[11., 100., 10.], ... [300., 40., 20.], [25., 30, 100.]]), ... b=ivy.array([[4., 400., 50.], [10., 10., 15.], ... [50., 5000., 40.]]), ... c=ivy.array([[25., 22., 100.], [55, 20., 20.], ... [55., 50., 100.]])) >>> y = x.inv() >>> print(y) { a: ivy.array([[-0.0012, 0.00342, -0.000565], [0.0104, -0.0003, -0.000981], [-0.00282, -0.000766, 0.0104]]), b: ivy.array([[-0.0322, 0.101, 0.00237], [0.000151, -0.00101, 0.00019], [0.0214, 0., -0.00171]]), c: ivy.array([[0.0107, 0.03, -0.0167], [-0.0472, -0.0322, 0.0536], [0.0177, -0.000429, -0.00762]])
}
- ivy.matmul(x1, x2, /, *, transpose_a=False, transpose_b=False, adjoint_a=False, adjoint_b=False, out=None)[source]#
Compute the matrix product.
- Parameters:
x1 (
Union
[Array
,NativeArray
]) – first input array. Should have a numeric data type. Must have at least one dimension.x2 (
Union
[Array
,NativeArray
]) – second input array. Should have a numeric data type. Must have at least one dimension.transpose_a (
bool
, default:False
) – if True,x1
is transposed before multiplication.transpose_b (
bool
, default:False
) – if True,x2
is transposed before multiplication.adjoint_a (
bool
, default:False
) – If True, takes the conjugate of the matrix then the transpose of the matrix. adjoint_a and transpose_a can not be true at the same time.adjoint_b (
bool
, default:False
) – If True, takes the conjugate of the matrix then the transpose of the matrix. adjoint_b and transpose_b can not be true at the same time.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret –
if both x1 and x2 are one-dimensional arrays having shape (N,), a zero-dimensional array containing the inner product as its only element.
if x1 is a two-dimensional array having shape (M, K) and x2 is a two-dimensional array having shape (K, N), a two-dimensional array
containing the conventional matrix product and having shape (M, N).
if x1 is a one-dimensional array having shape (K,) and x2 is an array having shape (…, K, N), an array having shape (…, N) (i.e., prepended dimensions during vector-to-matrix promotion must be removed) and containing the conventional matrix product.
if x1 is an array having shape (…, M, K) and x2 is a one-dimensional array having shape (K,), an array having shape (…, M) (i.e., appended dimensions during vector-to-matrix promotion must be removed) and containing the conventional matrix product.
if x1 is a two-dimensional array having shape (M, K) and x2 is an array having shape (…, K, N), an array having shape (…, M, N) and containing the conventional matrix product for each stacked matrix.
if x1 is an array having shape (…, M, K) and x2 is a two-dimensional array having shape (K, N), an array having shape (…, M, N) and containing the conventional matrix product for each stacked matrix.
if either x1 or x2 has more than two dimensions, an array having a shape determined by Broadcasting shape(x1)[:-2] against shape(x2)[:-2] and containing the conventional matrix product for each stacked matrix.
Raises
if either x1 or x2 is a zero-dimensional array.
if x1 is a one-dimensional array having shape (K,), x2 is a one-dimensional
array having shape (L,), and K != L.
if x1 is a one-dimensional array having shape (K,), x2 is an array having shape (…, L, N), and K != L.
if x1 is an array having shape (…, M, K), x2 is a one-dimensional array having shape (L,), and K != L.
if x1 is an array having shape (…, M, K), x2 is an array having shape (…, L, N), and K != L.
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.Examples
With
ivy.Array
inputs:>>> x = ivy.array([2., 0., 3.]) >>> y = ivy.array([4., 1., 8.]) >>> z = ivy.matmul(x, y) >>> print(z) ivy.array(32.)
>>> x = ivy.array([[1., 2.], [0., 1.]]) >>> y = ivy.array([[2., 0.], [0., 3.]]) >>> z = ivy.matmul(x, y, transpose_b=True) >>> print(z) ivy.array([[2., 6.], [0., 3.]])
With
ivy.Container
inputs:>>> x = ivy.Container(a=ivy.array([5., 1.]), b=ivy.array([1., 0.])) >>> y = ivy.Container(a=ivy.array([4., 7.]), b=ivy.array([3., 0.])) >>> z = ivy.matmul(x,y) >>> print(z) { a: ivy.array(27.), b: ivy.array(3.) }
With a combination of
ivy.Array
andivy.Container
inputs:>>> x = ivy.array([9., 0.]) >>> y = ivy.Container(a=ivy.array([2., 1.]), b=ivy.array([1., 0.])) >>> z = ivy.matmul(x, y) >>> print(z) { a: ivy.array(18.), b: ivy.array(9.) }
>>> x = ivy.array([[1., 2.], [0., 3.]]) >>> y = ivy.array([[1.], [3.]]) >>> z = ivy.matmul(x, y, transpose_a=True) >>> print(z) ivy.array([[ 1.], [11.]])
- ivy.matrix_norm(x, /, *, ord='fro', axis=(-2, -1), keepdims=False, dtype=None, out=None)[source]#
Compute the matrix p-norm.
- Parameters:
x (
Union
[Array
,NativeArray
]) – Input array having shape (…, M, N) and whose innermost two dimensions form MxN matrices. Should have a floating-point data type.ord (
Union
[int
,float
,Literal
[inf
,-inf
,'fro'
,'nuc'
]], default:'fro'
) –order of the norm. The following mathematical norms must be supported:
ord
description
’fro’
Frobenius norm
’nuc’
nuclear norm
1
max(sum(abs(x), axis=0))
2
largest singular value
inf
max(sum(abs(x), axis=1))
The following non-mathematical “norms” must be supported:
ord
description
-1
min(sum(abs(x), axis=0))
-2
smallest singular value
-inf
min(sum(abs(x), axis=1))
If
ord=1
, the norm corresponds to the induced matrix norm wherep=1
(i.e., the maximum absolute value column sum).If
ord=2
, the norm corresponds to the induced matrix norm wherep=inf
(i.e., the maximum absolute value row sum).If
ord=inf
, the norm corresponds to the induced matrix norm wherep=2
(i.e., the largest singular value).Default: “fro”.
axis (
Tuple
[int
,int
], default:(-2, -1)
) – specifies the axes that hold 2-D matrices. Default: (-2, -1).keepdims (
bool
, default:False
) – If this is set to True, the axes which are normed over are left in the result as dimensions with size one. With this option the result will broadcast correctly against the original x. Default isFalse
.dtype (
Optional
[Union
[Dtype
,NativeDtype
]], default:None
) – If specified, the input tensor is cast to dtype before performing the operation, and the returned tensor’s type will be dtype. Default: Noneout (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – Matrix norm of the array at specified axes. If
keepdims
isFalse
, the returned array must have a rank which is two less than the ranl ofx
. Ifx
has a real-valued data type, the returned array must have a real-valued floating-point data type based on Type promotion. Ifx
has a complex-valued data type, the returned array must have a real-valued floating-point data type whose precision matches the precision ofx
(e.g., ifx
iscomplex128
, then the returned array must have a float64` data type).
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.Examples
With
ivy.Array
inputs:>>> x = ivy.array([[1., 2.], [3., 4.]]) >>> y = ivy.matrix_norm(x) >>> print(y) ivy.array(5.47722558)
>>> x = ivy.arange(8, dtype=float).reshape((2, 2, 2)) >>> y = ivy.zeros(2) >>> ivy.matrix_norm(x, ord=1, out=y) >>> print(y) ivy.array([ 4., 12.])
>>> x = ivy.arange(12, dtype=float).reshape((3, 2, 2)) >>> y = ivy.zeros((3,)) >>> ivy.matrix_norm(x, ord=ivy.inf, axis=(2, 1), out=y) >>> print(y) ivy.array([ 4., 12., 20.])
>>> x = ivy.array([[1.1, 2.2], [3.3, 4.4], [5.5, 6.6]]) >>> y = ivy.matrix_norm(x, ord='nuc', keepdims=True) >>> print(y) ivy.array([[11.]])
>>> x = ivy.array([[[1.1, 2.2, 3.3], [4.4, 5.5, 6.6]], ... [[1., 0., 1.1], [1., 1., 0.]]]) >>> y = ivy.zeros((2,)) >>> ivy.matrix_norm(x, ord='fro', out=y) >>> print(y) ivy.array([10.5 , 2.05])
With
ivy.Container
input:>>> x = ivy.Container(a=ivy.array([[0.666, 9.11], ... [42.69, 9.23]]), ... b=ivy.array([[1.1, 2.2, 3.3], ... [4.4, 5.5, 6.6]])) >>> y = ivy.matrix_norm(x, ord=-ivy.inf) >>> print(y) { a: ivy.array(9.776), b: ivy.array(6.6000004) }
With multiple
ivy:Container
inputs:>>> x = ivy.Container(a=ivy.arange(12, dtype=float).reshape((3, 2, 2)), ... b=ivy.arange(8, dtype=float).reshape((2, 2, 2))) >>> ord = ivy.Container(a=1, b=float('inf')) >>> axis = ivy.Container(a=(1, 2), b=(2, 1)) >>> k = ivy.Container(a=False, b=True) >>> y = ivy.matrix_norm(x, ord=ord, axis=axis, keepdims=k) >>> print(y) { a: ivy.array([4., 12., 20.]), b: ivy.array([[[4.]], [[12.]]]) }
- ivy.matrix_power(x, n, /, *, out=None)[source]#
Raise a square matrix (or a stack of square matrices) x to an integer power n.
- Parameters:
x (
Union
[Array
,NativeArray
]) – input array having shape (…, M, M) and whose innermost two dimensions form square matrices. Should have a floating-point data type.n (
int
) – integer exponent.
- Return type:
- Returns:
- ret
if n is equal to zero, an array containing the identity matrix for each square matrix. If n is less than zero, an array containing the inverse of each square matrix raised to the absolute value of n, provided that each square matrix is invertible. If n is greater than zero, an array containing the result of raising each square matrix to the power n. The returned array must have the same shape as x and a floating-point data type determined by Type Promotion Rules.
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.Examples
With :code: ‘ivy.Array’ inputs:
>>> x = ivy.array([[1., 2.], [3., 4.]]) >>> ivy.matrix_power(x,1) ivy.array([[1., 2.], [3., 4.]])
>>> x = ivy.array([[3., 2.], [-5., -3.]]) >>> ivy.matrix_power(x,-1) ivy.array([[-3., -2.], [ 5., 3.]])
>>> x = ivy.array([[4., -1.], [0., 2.]]) >>> ivy.matrix_power(x,0) ivy.array([[1., 0.], [0., 1.]])
>>> x = ivy.array([[1., 2.], [0., 1.]]) >>> ivy.matrix_power(x,5) ivy.array([[ 1., 10.], [ 0., 1.]])
>>> x = ivy.array([[1/2, 0.], [0., -1/3]]) >>> ivy.matrix_power(x,-2) ivy.array([[4., 0.], [0., 9.]])
With :code: ‘ivy.NativeArray’ inputs:
>>> x = ivy.native_array([[1., 2., 3.], [6., 5., 4.], [7., 8., 9.]]) >>> ivy.matrix_power(x,2) ivy.array([[ 34., 36., 38.], [ 64., 69., 74.], [118., 126., 134.]])
With :code: ‘ivy.Container’ inputs:
>>> x = ivy.Container(a = ivy.array([[1., 2.], [3., 4.]]), b = ivy.array([[1., 0.], [0., 0.]])) >>> ivy.matrix_power(x,3) { a: ivy.array([[37., 54.], [81., 118.]]), b: ivy.array([[1., 0.], [0., 0.]]) }
- ivy.matrix_rank(x, /, *, atol=None, rtol=None, hermitian=False, out=None)[source]#
Return the rank (i.e., number of non-zero singular values) of a matrix (or a stack of matrices).
- Parameters:
x (
Union
[Array
,NativeArray
]) – input array having shape(..., M, N)
and whose innermost two dimensions formMxN
matrices. Should have a floating-point data type.atol (
Optional
[Union
[float
,Tuple
[float
]]], default:None
) – absolute tolerance. When None it’s considered to be zero.rtol (
Optional
[Union
[float
,Tuple
[float
]]], default:None
) – relative tolerance for small singular values. Singular values approximately less than or equal tortol * largest_singular_value
are set to zero. If afloat
, the value is equivalent to a zero-dimensional array having a floating-point data type determined by type-promotion (as applied tox
) and must be broadcast against each matrix. If anarray
, must have a floating-point data type and must be compatible withshape(x)[:-2]
(see broadcasting). IfNone
, the default value ismax(M, N) * eps
, whereeps
must be the machine epsilon associated with the floating-point data type determined by type-promotion (as applied tox
). Default:None
.hermitian (
Optional
[bool
], default:False
) – indicates whetherx
is Hermitian. Whenhermitian=True
,x
is assumed to be Hermitian, enabling a more efficient method for finding eigenvalues, but x is not checked inside the function. Instead, We just use the lower triangular of the matrix to compute. Default:False
.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – an array containing the ranks. The returned array must have a floating-point data type determined by type-promotion and must have shape
(...)
(i.e., must have a shape equal toshape(x)[:-2]
).
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.Examples
With :code: ‘ivy.Array’ inputs:
Full Matrix
>>> x = ivy.array([[1., 2.], [3., 4.]]) >>> ivy.matrix_rank(x) ivy.array(2.)
Rank Deficient Matrix
>>> x = ivy.array([[1., 0.], [0., 0.]]) >>> ivy.matrix_rank(x) ivy.array(1.)
1 Dimension - rank 1 unless all 0
>>> x = ivy.array([[1., 1.]) >>> ivy.matrix_rank(x) ivy.array(1.)
>>> x = ivy.array([[0., 0.]) >>> ivy.matrix_rank(x) ivy.array(0)
With :code: ‘ivy.NativeArray’ inputs:
>>> x = ivy.native_array([[1., 2.], [3., 4.]], [[1., 0.], [0., 0.]]) >>> ivy.matrix_rank(x) ivy.array([2., 1.])
With :code: ‘ivy.Container’ inputs: >>> x = ivy.Container(a = ivy.array([[1., 2.], [3., 4.]]), b = ivy.array([[1., 0.], [0., 0.]])) >>> ivy.matrix_rank(x) {
a:ivy.array(2.), b:ivy.array(1.)
}
- ivy.matrix_transpose(x, /, *, conjugate=False, out=None)[source]#
Transposes a matrix (or a stack of matrices)
x
.- Parameters:
x (
Union
[Array
,NativeArray
]) – input array having shape(..., M, N)
and whose innermost two dimensions formMxN
matrices.conjugate (
bool
, default:False
) – If True, takes the conjugate of the matrix.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – an array containing the transpose for each matrix and having shape
(..., N, M)
. The returned array must have the same data type asx
.
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.Examples
With :code: ‘ivy.Array’ inputs:
>>> x = ivy.array([[0., 2.], [1., 3.]]) >>> y = ivy.matrix_transpose(x) >>> print(y) ivy.array([[0., 1.], [2., 3.]])
>>> x = ivy.array([[1., 4.], [2., 5.], [3., 1.]]) >>> y = ivy.zeros((2, 3)) >>> ivy.matrix_transpose(x, out=y) ivy.array([[1., 2., 3.], [4., 5., 1.]])
>>> x = ivy.array([[2., 3.], [1., 2.]]) >>> ivy.matrix_transpose(x, out=x) ivy.array([[2., 1.], [3., 2.]])
>>> x = ivy.array([[0., 1., 2.], [1., 2., 3.]]) >>> y = ivy.matrix_transpose(x) >>> print(y) ivy.array([[0., 1.], [1., 2.], [2., 3.]])
With :code: ‘ivy.Container’ inputs:
>>> x = ivy.Container(a=ivy.array([[0., 1.], [0., 2.]]), b=ivy.array([[3., 4.], [3., 5.]])) >>> y = ivy.matrix_transpose(x) >>> print(y) { a: ivy.array([[0., 0.], [1., 2.]]), b: ivy.array([[3., 3.], [4., 5.]]) }
- ivy.outer(x1, x2, /, *, out=None)[source]#
Return the outer product of two vectors
x1
andx2
.- Parameters:
x1 (
Union
[Array
,NativeArray
]) – first one-dimensional input array of size N. Should have a numeric data type. a(N,) array_like First input vector. Input is flattened if not already 1-dimensional.x2 (
Union
[Array
,NativeArray
]) – second one-dimensional input array of size M. Should have a numeric data type. b(M,) array_like Second input vector. Input is flattened if not already 1-dimensional.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – a two-dimensional array containing the outer product and whose shape is (N, M). The returned array must have a data type determined by Type Promotion Rules.
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.Examples
>>> x = ivy.array([[1., 2.],[3., 4.]]) >>> y = ivy.array([[5., 6.],[7., 8.]]) >>> d = ivy.outer(x,y) >>> print(d) ivy.array([[ 5., 6., 7., 8.], [10., 12., 14., 16.], [15., 18., 21., 24.], [20., 24., 28., 32.]])
>>> d = ivy.outer(x, 1) >>> print(d) ivy.array([[1.], [2.], [3.], [4.]])
>>> x = ivy.array([[[1., 2.],[3., 4.]],[[5., 6.],[7., 8.]]]) >>> y = ivy.array([[[9., 10.],[11., 12.]],[[13., 14.],[15., 16.]]]) >>> d = ivy.outer(x, y) >>> print(d) ivy.array([[ 9., 10., 11., 12., 13., 14., 15., 16.], [ 18., 20., 22., 24., 26., 28., 30., 32.], [ 27., 30., 33., 36., 39., 42., 45., 48.], [ 36., 40., 44., 48., 52., 56., 60., 64.], [ 45., 50., 55., 60., 65., 70., 75., 80.], [ 54., 60., 66., 72., 78., 84., 90., 96.], [ 63., 70., 77., 84., 91., 98., 105., 112.], [ 72., 80., 88., 96., 104., 112., 120., 128.]])
- ivy.pinv(x, /, *, rtol=None, out=None)[source]#
Return the (Moore-Penrose) pseudo-inverse of a matrix (or a stack of matrices)
x
.- Parameters:
x (
Union
[Array
,NativeArray
]) – input array having shape(..., M, N)
and whose innermost two dimensions formMxN
matrices. Should have a floating-point data type.rtol (
Optional
[Union
[float
,Tuple
[float
]]], default:None
) – relative tolerance for small singular values. Singular values approximately less than or equal tortol * largest_singular_value
are set to zero. If afloat
, the value is equivalent to a zero-dimensional array having a floating-point data type determined by type-promotion (as applied tox
) and must be broadcast against each matrix. If anarray
, must have a floating-point data type and must be compatible withshape(x)[:-2]
(see broadcasting). IfNone
, the default value ismax(M, N) * eps
, whereeps
must be the machine epsilon associated with the floating-point data type determined by type-promotion (as applied tox
). Default:None
.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – an array containing the pseudo-inverses. The returned array must have a floating-point data type determined by type-promotion and must have shape
(..., N, M)
(i.e., must have the same shape asx
, except the innermost two dimensions must be transposed).
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.Examples
>>> x = ivy.array([[1., 2.],[3., 4.]]) >>> y = ivy.pinv(x) >>> print(y) ivy.array([[-1.99999988, 1. ], [ 1.5 , -0.5 ]])
>>> x = ivy.array([[1., 2.],[3., 4.]]) >>> out = ivy.zeros(x.shape) >>> ivy.pinv(x, out=out) >>> print(out) ivy.array([[-1.99999988, 1. ], [ 1.5 , -0.5 ]])
- ivy.qr(x, /, *, mode='reduced', out=None)[source]#
Return the qr decomposition x = QR of a full column rank matrix (or a stack of matrices), where Q is an orthonormal matrix (or a stack of matrices) and R is an upper-triangular matrix (or a stack of matrices).
- Parameters:
x (
Union
[Array
,NativeArray
]) – input array having shape (…, M, N) and whose innermost two dimensions form MxN matrices of rank N. Should have a floating-point data type.mode (
str
, default:'reduced'
) –decomposition mode. Should be one of the following modes: - ‘reduced’: compute only the leading K columns of q, such that q and r have
dimensions (…, M, K) and (…, K, N), respectively, and where K = min(M, N).
’complete’: compute q and r with dimensions (…, M, M) and (…, M, N), respectively.
Default: ‘reduced’.
out (
Optional
[Tuple
[Array
,Array
]], default:None
) – optional output tuple of arrays, for writing the result to. The arrays must have shapes that the inputs broadcast to.
- Return type:
- Returns:
ret – a namedtuple (Q, R) whose - first element must have the field name Q and must be an array whose shape
depends on the value of mode and contain matrices with orthonormal columns. If mode is ‘complete’, the array must have shape (…, M, M). If mode is ‘reduced’, the array must have shape (…, M, K), where K = min(M, N). The first x.ndim-2 dimensions must have the same size as those of the input array x.
second element must have the field name R and must be an array whose shape depends on the value of mode and contain upper-triangular matrices. If mode is ‘complete’, the array must have shape (…, M, N). If mode is ‘reduced’, the array must have shape (…, K, N), where K = min(M, N). The first x.ndim-2 dimensions must have the same size as those of the input x.
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.Examples
With
ivy.Array
input:>>> x = ivy.array([[1.,2.,3.],[4.,5.,6.],[7.,8.,9.]]) >>> q, r = ivy.qr(x) >>> print(q) ivy.array([[-0.12309149, 0.90453403, 0.40824829], [-0.49236596, 0.30151134, -0.81649658], [-0.86164044, -0.30151134, 0.40824829]]) >>> print(r) ivy.array([[-8.12403841e+00,-9.60113630e+00, -1.10782342e+01], [ 0.00000000e+00, 9.04534034e-01, 1.80906807e+00], [ 0.00000000e+00, 0.00000000e+00, -8.88178420e-16]])
# Note: if int values are used in x the output for q, r vary >>> x = ivy.array([[1., 2.], [3., 4.]]) >>> q = ivy.zeros_like(x) >>> r = ivy.zeros_like(x) >>> ivy.qr(x, out=(q,r)) >>> print(q) ivy.array([[-0.31622776, -0.94868332],
[-0.94868332, 0.31622776]])
>>> print(r) ivy.array([[-3.1622777 , -4.42718887], [ 0. , -0.63245553]])
With
ivy.Container
input:>>> x = ivy.Container(a = ivy.native_array([[1., 2.], [3., 4.]]), ... b = ivy.array([[2., 3.], [4. ,5.]])) >>> q,r = ivy.qr(x, mode='complete') >>> print(q) { a: ivy.array([[-0.31622777, -0.9486833], [-0.9486833, 0.31622777]]), b: ivy.array([[-0.4472136, -0.89442719], [-0.89442719, 0.4472136]]) } >>> print(r) { a: ivy.array([[-3.16227766, -4.42718872], [0., -0.63245553]]), b: ivy.array([[-4.47213595, -5.81377674], [0., -0.4472136]]) }
- ivy.slogdet(x, /)[source]#
Return the sign and the natural logarithm of the absolute value of the determinant of a square matrix (or a stack of square matrices)
x
. .. note:The purpose of this function is to calculate the determinant more accurately when the determinant is either very small or very large, as calling ``det`` may overflow or underflow.
Special cases
For real-valued floating-point operands,
If the determinant is zero, the
sign
should be0``and ``logabsdet
should be
infinity
.For complex floating-point operands,
If the detereminant is
0 + 0j
, thesign
should be0 + 0j
and
logabsdet
should beinfinity + 0j
.- Parameters:
x (
Union
[Array
,NativeArray
]) – input array having shape(..., M, M)
and whose innermost two dimensions form square matrices. Should have a real-valued floating-point data type.- Return type:
- Returns:
ret – a namedtuple (
sign
,logabsdet
) whose - first element must have the field namesign
and must be an array containing a number representing the sign of the determinant for each square matrix. - second element must have the field namelogabsdet
and must be an array containing the determinant for each square matrix. For a real matrix, the sign of the determinant must be either1
,0
, or-1
. Each returned array must have shapeshape(x)[:-2]
and a real-valued floating-point data type determined by type-promotion. Ifx
is complex, the returned array must have a real-valued floating-point data type having the same precision asx
(1.g., ifx
iscomplex64
,logabsdet
must have afloat32
data type) .. note:If a determinant is zero, then the corresponding ``sign`` should be ``0`` and ``logabsdet`` should be ``-infinity``; however, depending on the underlying algorithm, the returned result may differ. In all cases, the determinant should be equal to ``sign * exp(logsabsdet)`` (although, again, the result may be subject to numerical precision errors).
This function conforms to the `Array API Standard
<https (//data-apis.org/array-api/latest/>`_. This docstring is an extension of the)
`docstring <https (//data-apis.org/array-api/latest/)
extensions/generated/array_api.linalg.slogdet.html>`_
in the standard.
Both the description and the type hints above assumes an array input for simplicity,
but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.
Examples
With
ivy.Array
input:>>> x = ivy.array([[2.0, 1.0], ... [3.0, 4.0]]) >>> y = ivy.slogdet(x) >>> print(y) slogdet(sign=ivy.array(1.), logabsdet=ivy.array(1.60943794))
>>> ivy.set_backend('numpy') # As the precision of results depends on backend. >>> x = ivy.array([[1.2, 2.0, 3.1], ... [6.0, 5.2, 4.0], ... [9.0, 8.0, 7.0]]) >>> y = ivy.slogdet(x) >>> print(y) slogdet(sign=ivy.array(-1.), logabsdet=ivy.array(1.098611))
With
ivy.Container
input:>>> ivy.unset_backend() # unset backend again. >>> x = ivy.Container(a=ivy.array([[1.0, 2.0], ... [3.0, 4.0]]), ... b=ivy.array([[1.0, 2.0], ... [2.0, 1.0]])) >>> y = ivy.slogdet(x) >>> print(y) [{ a: ivy.array(-1.), b: ivy.array(-1.) }, { a: ivy.array(0.69314718), b: ivy.array(1.09861231) }]
- ivy.solve(x1, x2, /, *, adjoint=False, out=None)[source]#
Return the solution x to the system of linear equations represented by the well- determined (i.e., full rank) linear matrix equation Ax = B.
- Parameters:
x1 (
Union
[Array
,NativeArray
]) – coefficient array A having shape (…, M, M) and whose innermost two dimensions form square matrices. Must be of full rank (i.e., all rows or, equivalently, columns must be linearly independent). Should have a floating-point data type.x2 (
Union
[Array
,NativeArray
]) – ordinate (or “dependent variable”) array B. If x2 has shape (M,1), x2 is equivalent to an array having shape (…, M, 1). If x2 has shape (…, M, K), each column k defines a set of ordinate values for which to compute a solution, and shape(x2)[:-1] must be compatible with shape(x1)[:-1] (see Broadcasting). Should have a floating-point data type.adjoint (
bool
, default:False
) – specifies whether the system should be solved for x1 or adjoint(x1)out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – an array containing the solution to the system AX = B (or adjoint(A)X = B) for each square matrix. The returned array must have the same shape as x2 (i.e., the array corresponding to B) and must have a floating-point data type determined by Type Promotion Rules.
This function conforms to the `Array API Standard
<https (//data-apis.org/array-api/latest/>`_. This docstring is an extension of the)
`docstring <https (//data-apis.org/array-api/latest/)
extensions/generated/array_api.linalg.solve.html>`_
in the standard.
Both the description and the type hints above assume an array input for simplicity,
but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.
Examples
With class:ivy.Array input: >>> A = ivy.array([[1.1, 1.2, 1.3], [2.1, 2.2, 2.3], [3.1, 3.2, 3.3]]), >>> B = ivy.array([[1.1], [2.1], [3.1]]), >>> x = ivy.solve(A,B); >>> print(x) ivy.array([[1],
[0], [0]])
>>> print(x.shape) (1,3)
With shape(A) = (2,3,3) and shape(B) = (2,3,1): >>> A = ivy.array([[[11.1, 11.2, 11.3],[12.1, 12.2, 12.3],[13.1, 13.2, 13.3]], [[21.1, 21.2, 21.3],[22.1, 22.2, 22.3],[23.1, 23.2, 23.3]]]), >>> B = ivy.array([[[11.1],
[12.1], [13.1]],
- [[21.1],
[22.1], [23.1]]]),
>>> x = ivy.solve(A,B); >>> print(x) ivy.array([[[1], [0], [0]], [[1], [0], [0]]]) >>> print(x.shape) (2,1,3)
With shape(A) = (3,3) and shape(B) = (3,2): >>> A = ivy.array([[1.1, 1.2, 1.3], [2.1, 2.2, 2.3], [3.1, 3.2, 3.3]]), >>> B = ivy.array([[1.1, 2.2], [2.1, 4.2], [3.1, 6.2]]), >>> x = ivy.solve(A,B); >>> print(x) ivy.array([[[1],
[0], [0]],
- [[2],
[0], [0]]])
>>> print(x.shape) (2,1,3)
With class:ivy.Container input: >>> A = ivy.array([[1.1, 1.2, 1.3], [2.1, 2.2, 2.3], [3.1, 3.2, 3.3]]), >>> B = ivy.container(B1 = ivy.array([[1.1], [2.1], [3.1]]),
B2 = ivy.array([[2.2], [4.2], [6.2]]))
>>> x = ivy.solve(A,B); >>> print(x) { B1:([[1],[0],[0]]), B2:([[2],[0],[0]]) }
- ivy.svd(x, /, *, compute_uv=True, full_matrices=True)[source]#
Return a singular value decomposition A = USVh of a matrix (or a stack of matrices)
x
, whereU
is a matrix (or a stack of matrices) with orthonormal columns,S
is a vector of non-negative numbers (or stack of vectors), andVh
is a matrix (or a stack of matrices) with orthonormal rows.- Parameters:
x (
Union
[Array
,NativeArray
]) – input array having shape(..., M, N)
and whose innermost two dimensions form matrices on which to perform singular value decomposition. Should have a floating-point data type.full_matrices (
bool
, default:True
) – IfTrue
, compute full-sizedU
andVh
, such thatU
has shape(..., M, M)
andVh
has shape(..., N, N)
. IfFalse
, compute on the leadingK
singular vectors, such thatU
has shape(..., M, K)
andVh
has shape(..., K, N)
and whereK = min(M, N)
. Default:True
.compute_uv (
bool
, default:True
) – IfTrue
then left and right singular vectors will be computed and returned inU
andVh
, respectively. Otherwise, only the singular values will be computed, which can be significantly faster.note:: (..) – with backend set as torch, svd with still compute left and right singular vectors irrespective of the value of compute_uv, however Ivy will still only return the singular values.
- Return type:
- Returns:
.. note:: – once complex numbers are supported, each square matrix must be Hermitian.
ret – a namedtuple
(U, S, Vh)
whosefirst element must have the field name
U
and must be an array whose shape depends on the value offull_matrices
and contain matrices with orthonormal columns (i.e., the columns are left singular vectors). Iffull_matrices
isTrue
, the array must have shape(..., M, M)
. Iffull_matrices
isFalse
, the array must have shape(..., M, K)
, whereK = min(M, N)
. The firstx.ndim-2
dimensions must have the same shape as those of the inputx
.second element must have the field name
S
and must be an array with shape(..., K)
that contains the vector(s) of singular values of lengthK
, whereK = min(M, N)
. For each vector, the singular values must be sorted in descending order by magnitude, such thats[..., 0]
is the largest value,s[..., 1]
is the second largest value, et cetera. The firstx.ndim-2
dimensions must have the same shape as those of the inputx
. Must have a real-valued floating-point data type having the same precision asx
(e.g., ifx
iscomplex64
,S
must have afloat32
data type).third element must have the field name
Vh
and must be an array whose shape depends on the value offull_matrices
and contain orthonormal rows (i.e., the rows are the right singular vectors and the array is the adjoint). Iffull_matrices
isTrue
, the array must have shape(..., N, N)
. Iffull_matrices
isFalse
, the array must have shape(..., K, N)
whereK = min(M, N)
. The firstx.ndim-2
dimensions must have the same shape as those of the inputx
. Must have the same data type asx
.
Each returned array must have the same floating-point data type as
x
.
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.Examples
With
ivy.Array
input:>>> x = ivy.random_normal(shape = (9, 6)) >>> U, S, Vh = ivy.svd(x) >>> print(U.shape, S.shape, Vh.shape) (9, 9) (6,) (6, 6)
With reconstruction from SVD, result is numerically close to x
>>> reconstructed_x = ivy.matmul(U[:,:6] * S, Vh) >>> print((reconstructed_x - x > 1e-3).sum()) ivy.array(0)
>>> U, S, Vh = ivy.svd(x, full_matrices = False) >>> print(U.shape, S.shape, Vh.shape) (9, 6) (6,) (6, 6)
With
ivy.Container
input:>>> x = ivy.Container(a=ivy.array([[2.0, 3.0, 6.0], [5.0, 3.0, 4.0], ... [1.0, 7.0, 3.0], [3.0, 2.0, 5.0]]), ... b=ivy.array([[7.0, 1.0, 2.0, 3.0, 9.0], ... [2.0, 5.0, 3.0, 4.0, 10.0], ... [2.0, 11.0, 6.0, 1.0, 3.0], ... [8.0, 3.0, 4.0, 5.0, 9.0]])) >>> U, S, Vh = ivy.svd(x) >>> print(U.shape) { a: [ 4, 4 ], b: [ 4, 4 ] }
- ivy.svdvals(x, /, *, driver=None, out=None)[source]#
Return the singular values of a matrix (or a stack of matrices)
x
.- Parameters:
x (
Union
[Array
,NativeArray
]) – input array having shape(..., M, N)
and whose innermost two dimensions formMxN
matrices.driver (
Optional
[str
], default:None
) – optional output array,name of the cuSOLVER method to be used. This keyword argument only works on CUDA inputs. Available options are: None, gesvd, gesvdj, and gesvda.Default: None.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – array with shape
(..., K)
that contains the vector(s) of singular values of lengthK
, where K = min(M, N). The values are sorted in descending order by magnitude. The returned array must have a real-valued floating-point data type having the same precision asx
(e.g., ifx
iscomplex64
, the returned array must have afloat32
data type).
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.Examples
With
ivy.Array
input:>>> x = ivy.array([[5.0, 7.0], [4.0, 3.0]]) >>> y = ivy.svdvals(x) >>> print(y.shape) ivy.Shape(2,)
With comparison of the singular value S ivy.svdvals() by the result ivy.svd().
>>> x = ivy.array([[5.0, 7.0], [4.0, 3.0]]) >>> _, y, _ = ivy.svd(x) >>> print(y.shape) ivy.Shape(2,)
>>> x = ivy.array([9.86217213, 1.31816804]) >>> y = ivy.array([9.86217213, 1.31816804]) >>> error = (x - y).abs() >>> print(error) ivy.array([0.,0.])
With
ivy.NativeArray
input:>>> x = ivy.native_array([[1.0, 2.0, 3.0], [2.0, 3.0, 4.0], ... [2.0, 1.0, 3.0], [3.0, 4.0, 5.0]]) >>> x.shape (4, 3)
>>> x = ivy.native_array([[1.0, 2.0, 3.0], [2.0, 3.0, 4.0], ... [2.0, 1.0, 3.0], [3.0, 4.0, 5.0]]) >>> y = ivy.svdvals(x) >>> print(y) ivy.array([10.3, 1.16, 0.615])
>>> _, SS, _ = ivy.svd(x) >>> print(SS) ivy.array([10.3, 1.16, 0.615])
with comparison of singular value S ivy.svdvals() by the result ivy.svd().
>>> x = ivy.array([10.25994301, 1.16403675, 0.61529762]) >>> y = ivy.array([9.86217213, 1.31816804, 0.51231241]) >>> error = (x - y).abs() >>> print(error) ivy.array([0.39777088, 0.15413129, 0.1029852 ])
With
ivy.Container
input:>>> x = ivy.Container(a=ivy.array([[2.0, 3.0], [3.0, 4.0], ... [1.0, 3.0], [3.0, 5.0]]), ... b=ivy.array([[7.0, 1.0, 2.0, 3.0], ... [2.0, 5.0, 3.0, 4.0], ... [2.0, 6.0, 1.0, 3.0], ... [3.0, 4.0, 5.0, 9.0]])) >>> y = ivy.svdvals(x) >>> print(y) { a: ivy.array([9.01383495, 0.86647356]), b: ivy.array([15.7786541, 5.55970621, 4.16857576, 0.86412698]) }
Instance Method Examples
Using
ivy.Array
instance method:>>> x = ivy.array([[8.0, 3.0], [2.0, 3.0], ... [2.0, 1.0], [3.0, 4.0], ... [4.0, 1.0], [5.0, 6.0]]) >>> y = x.svdvals() >>> print(y) ivy.array([13.37566757, 3.88477993])
With
ivy.Container
instance method:>>> x = ivy.Container(a=ivy.array([[2.0, 3.0, 6.0], [5.0, 3.0, 4.0], ... [1.0, 7.0, 3.0], [3.0, 2.0, 5.0]]), ... b=ivy.array([[7.0, 1.0, 2.0, 3.0, 9.0], ... [2.0, 5.0, 3.0, 4.0, 10.0], ... [2.0, 11.0, 6.0, 1.0, 3.0], ... [8.0, 3.0, 4.0, 5.0, 9.0]])) >>> y = x.svdvals() >>> print(y) { a: ivy.array([12.95925522, 4.6444726, 2.54687881]), b: ivy.array([23.16134834, 10.35037804, 4.31025076, 1.35769391]) }
- ivy.tensordot(x1, x2, /, *, axes=2, out=None)[source]#
Return a tensor contraction of x1 and x2 over specific axes.
Note
If either
x1
orx2
has a complex floating-point data type, neither argument must be complex-conjugated or transposed. If conjugation and/or transposition is desired, these operations should explicitly performed prior to computing the generalized matrix product.- Parameters:
x1 (
Union
[Array
,NativeArray
]) – First input array. Should have a numeric data type.x2 (
Union
[Array
,NativeArray
]) – second input array. Must be compatible with x1 for all non-contracted axes. Should have a numeric data type.axes (
Union
[int
,Tuple
[List
[int
],List
[int
]]], default:2
) – The axes to contract over. Default is 2.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – The tensor contraction of x1 and x2 over the specified axes.
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.Examples
With
ivy.Array
input:>>> x = ivy.array([[1., 2.], [2., 3.]]) >>> y = ivy.array([[3., 4.], [4., 5.]]) >>> res = ivy.tensordot(x, y, axes =0) >>> print(res) ivy.array([[[[3.,4.],[4.,5.]],[[6.,8.],[8.,10.]]],[[[6.,8.],[8.,10.]],[[9.,12.],[12.,15.]]]])
With :class:’ivy.NativeArray’ input:
>>> x = ivy.native_array([[1., 2.], [2., 3.]]) >>> y = ivy.native_array([[3., 4.], [4., 5.]]) >>> res = ivy.tensordot(x, y, axes = ([1],[1])) >>> print(res) ivy.array([[11., 14.], [18., 23.]])
With a mix of
ivy.Array
andivy.NativeArray
inputs:>>> x = ivy.array([[1., 0., 1.], [2., 3., 6.], [0., 7., 2.]]) >>> y = ivy.native_array([[1.], [2.], [3.]]) >>> res = ivy.tensordot(x, y, axes = 1) >>> print(res) ivy.array([[ 4.], [26.], [20.]])
With
ivy.Container
input:>>> x = ivy.Container(a=ivy.array([[1., 0., 3.], [2., 3., 4.]]), ... b=ivy.array([[5., 6., 7.], [3., 4., 8.]])) >>> y = ivy.Container(a=ivy.array([[2., 4., 5.], [9., 10., 6.]]), ... b=ivy.array([[1., 0., 3.], [2., 3., 4.]])) >>> res = ivy.tensordot(x, y) >>> print(res) { a: ivy.array(89.), b: ivy.array(76.) }
- ivy.trace(x, /, *, offset=0, axis1=0, axis2=1, out=None)[source]#
Return the sum along the specified diagonals of a matrix (or a stack of matrices)
x
.Special cases
Let
N
equal the number of elements over which to compute the sum.If
N
is0
, the sum is0
(i.e., the empty sum).
For both real-valued and complex floating-point operands, special cases must be handled as if the operation is implemented by successive application of
ivy.add()
:- Parameters:
x (
Union
[Array
,NativeArray
]) – input array having shape(..., M, N)
and whose innermost two dimensions formMxN
matrices. Should have a numeric data type.offset (
int
, default:0
) –offset specifying the off-diagonal relative to the main diagonal. -
offset = 0
: the main diagonal. -offset > 0
: off-diagonal above the main diagonal. -offset < 0
: off-diagonal below the main diagonal.Default:
0
.axis1 (
int
, default:0
) – axis to be used as the first axis of the 2-D sub-arrays from which the diagonals should be taken. Defaults to0.
.axis2 (
int
, default:1
) – axis to be used as the second axis of the 2-D sub-arrays from which the diagonals should be taken. Defaults to1.
.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – an array containing the traces and whose shape is determined by removing the last two dimensions and storing the traces in the last array dimension. For example, if
x
has rankk
and shape(I, J, K, ..., L, M, N)
, then an output array has rankk-2
and shape(I, J, K, ..., L)
whereout[i, j, k, ..., l] = trace(a[i, j, k, ..., l, :, :])
The returned array must have the same data type as
x
.
Examples
With
ivy.Array
inputs:>>> x = ivy.array([[2., 0., 3.], ... [3., 5., 6.]]) >>> y = ivy.trace(x, offset=0) >>> print(y) ivy.array(7.)
>>> x = ivy.array([[[1., 2.], ... [3., 4.]], ... [[5., 6.], ... [7., 8.]]]) >>> y = ivy.trace(x, offset=1) >>> print(y) ivy.array([3., 4.])
>>> x = ivy.array([[1., 2., 3.], ... [4., 5., 6.], ... [7., 8., 9.]]) >>> y = ivy.zeros(1) >>> ivy.trace(x, offset=1,out=y) >>> print(y) ivy.array(8.)
With
ivy.NativeArray
inputs:>>> x = ivy.native_array([[2., 0., 3.],[3., 5., 6.]]) >>> y = ivy.trace(x, offset=0) >>> print(y) ivy.array(7.)
>>> x = ivy.native_array([[0, 1, 2], ... [3, 4, 5], ... [6, 7, 8]]) >>> y = ivy.trace(x, offset=1) >>> print(y) ivy.array(6)
With
ivy.Container
inputs:>>> x = ivy.Container( ... a = ivy.array([[7, 1, 2], ... [1, 3, 5], ... [0, 7, 4]]), ... b = ivy.array([[4, 3, 2], ... [1, 9, 5], ... [7, 0, 6]]) ... ) >>> y = ivy.trace(x, offset=0) >>> print(y) { a: ivy.array(14), b: ivy.array(19) }
>>> x = ivy.Container( ... a = ivy.array([[7, 1, 2], ... [1, 3, 5], ... [0, 7, 4]]), ... b = ivy.array([[4, 3, 2], ... [1, 9, 5], ... [7, 0, 6]]) ... ) >>> y = ivy.trace(x, offset=1) >>> print(y) { a: ivy.array(6), b: ivy.array(8) }
With multiple ivy.Container inputs:
>>> x = ivy.Container( ... a = ivy.array([[7, 1, 3], ... [8, 6, 5], ... [9, 7, 2]]), ... b = ivy.array([[4, 3, 2], ... [1, 9, 5], ... [7, 0, 6]]) ... ) >>> offset = ivy.Container(a=1, b=0) >>> y = ivy.trace(x, offset=offset) >>> print(y) { a: ivy.array(6), b: ivy.array(19) }
With Array instance method example:
>>> x = ivy.array([[2., 0., 11.], ... [3., 5., 12.], ... [1., 6., 13.], ... [8., 9., 14.]]) >>> y = x.trace(offset=1) >>> print(y) ivy.array(12.)
With Container instance method example:
>>> x = ivy.Container( ... a=ivy.array([[2., 0., 11.], ... [3., 5., 12.]]), ... b=ivy.array([[1., 6., 13.], ... [8., 9., 14.]]) ... ) >>> y = x.trace(offset=0) >>> print(y) { a: ivy.array(7.), b: ivy.array(10.) }
- ivy.vander(x, /, *, N=None, increasing=False, out=None)[source]#
Generate a Vandermonde matrix. The columns of the output matrix are elementwise powers of the input vector x^{(N-1)}, x^{(N-2)}, …, x^0x. If increasing is True, the order of the columns is reversed x^0, x^1, …, x^{(N-1)}. Such a matrix with a geometric progression in each row is named for Alexandre-Theophile Vandermonde.
- Parameters:
x (
Union
[Array
,NativeArray
]) – 1-D input array.N (
Optional
[int
], default:None
) – Number of columns in the output. If N is not specified, a square array is returned (N = len(x))increasing (
bool
, default:False
) – Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to.
- Return type:
- Returns:
ret – Vandermonde matrix.
Examples
With
ivy.Array
inputs:>>> x = ivy.array([1, 2, 3, 5]) >>> ivy.vander(x) ivy.array( [[ 1, 1, 1, 1], [ 8, 4, 2, 1], [ 27, 9, 3, 1], [125, 25, 5, 1]] )
>>> x = ivy.array([1, 2, 3, 5]) >>> ivy.vander(x, N=3) ivy.array( [[ 1, 1, 1], [ 4, 2, 1], [ 9, 3, 1], [25, 5, 1]] )
>>> x = ivy.array([1, 2, 3, 5]) >>> ivy.vander(x, N=3, increasing=True) ivy.array( [[ 1, 1, 1], [ 1, 2, 4], [ 1, 3, 9], [ 1, 5, 25]] )
- ivy.vecdot(x1, x2, /, *, axis=-1, out=None)[source]#
Compute the (vector) dot product of two arrays.
- Parameters:
x1 (
Union
[Array
,NativeArray
]) – first input array. Should have a numeric data type.x2 (
Union
[Array
,NativeArray
]) – second input array. Must be compatible withx1
(see broadcasting). Should have a numeric data type.axis (
int
, default:-1
) – axis over which to compute the dot product. Must be an integer on the interval[-N, N)
, whereN
is the rank (number of dimensions) of the shape determined according to broadcasting. If specified as a negative integer, the function must determine the axis along which to compute the dot product by counting backward from the last dimension (where-1
refers to the last dimension). By default, the function must compute the dot product over the last axis. Default:-1
.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – if
x1
andx2
are both one-dimensional arrays, a zero-dimensional containing the dot product; otherwise, a non-zero-dimensional array containing the dot products and having rankN-1
, whereN
is the rank (number of dimensions) of the shape determined according to broadcasting. The returned array must have a data type determined by type-promotion.
Raises
if provided an invalid
axis
.if the size of the axis over which to compute the dot product is not the same for both
x1
andx2
.
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.Examples
With
ivy.Array
input:>>> x1 = ivy.array([1., 2., 3.]) >>> x2 = ivy.array([4., 5., 6.]) >>> dot_product = ivy.vecdot(x1, x2) >>> print(dot_product) ivy.array(32.)
>>> x1 = ivy.array([1., 2., 3.]) >>> x2 = ivy.array([1., .8, 4.]) >>> y = ivy.zeros(1) >>> ivy.vecdot(x1, x2, out=y) ivy.array(14.60000038)
With
ivy.Container
input:>>> x1 = ivy.array([1., 2., 3.]) >>> x2 = ivy.Container(a=ivy.array([7., 8., 9.]), b=ivy.array([10., 11., 12.])) >>> dot_product = ivy.vecdot(x1, x2, axis=0) >>> print(dot_product) { a: ivy.array(50.), b: ivy.array(68.) }
- ivy.vector_norm(x, /, *, axis=None, keepdims=False, ord=2, dtype=None, out=None)[source]#
Compute the vector norm of a vector (or batch of vectors)
x
.- Parameters:
x (
Union
[Array
,NativeArray
]) – input array. Should have a floating-point data type.axis (
Optional
[Union
[int
,Sequence
[int
]]], default:None
) – If an integer,axis
specifies the axis (dimension) along which to compute vector norms. If an n-tuple,axis
specifies the axes (dimensions) along which to compute batched vector norms. IfNone
, the vector norm must be computed over all array values (i.e., equivalent to computing the vector norm of a flattened array). Negative indices are also supported. Default:None
.keepdims (
bool
, default:False
) – IfTrue
, the axes (dimensions) specified byaxis
must be included in the result as singleton dimensions, and, accordingly, the result must be compatible with the input array (see broadcasting). Otherwise, ifFalse
, the axes (dimensions) specified byaxis
must not be included in the result. Default:False
.ord (
Union
[int
,float
,Literal
[inf
,-inf
]], default:2
) –order of the norm. The following mathematical norms are supported:
ord
description
1
L1-norm (Manhattan)
2
L2-norm (Euclidean)
inf
infinity norm
(int,float >= 1)
p-norm
The following non-mathematical “norms” are also supported:
ord
description
0
sum(a != 0)
-inf
min(abs(a))
(int,float < 1)
sum(abs(a)**ord)**(1./ord)
Default:
2
.dtype (
Optional
[Union
[Dtype
,NativeDtype
]], default:None
) – data type that may be used to perform the computation more precisely. The input arrayx
gets cast todtype
before the function’s computations.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – an array containing the vector norms. If
axis
isNone
, the returned array must be a zero-dimensional array containing a vector norm. Ifaxis
is a scalar value (int
orfloat
), the returned array must have a rank which is one less than the rank ofx
. Ifaxis
is an
-tuple, the returned array must have a rank which isn
less than the rank ofx
. The returned array must have a floating-point data type determined by type-promotion. Ifx
has a complex-valued data type, the returned array must have a real-valued floating-point data type whose precision matches the precision ofx
(e.g., ifx
iscomplex128
, then the returned array must have afloat64
data type).
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.Examples
>>> x = ivy.array([1., 2., 3.]) >>> y = ivy.vector_norm(x) >>> print(y) ivy.array([3.7416575])
>>> x = ivy.array([[1, 2, 3], [1.3, 2.4, -1.2]]) >>> y = ivy.vector_norm(x, axis = 1, ord = 1, dtype = ivy.float32) >>> print(y) ivy.array([6., 4.9000001])
>>> x = ivy.array([[1, 2, 3], [1.3, 2.4, -1.2]]) >>> y = ivy.vector_norm(x, axis = 0, keepdims = True, ord = float("inf")) >>> print(y)
ivy.array([[1.3, 2.4, 3.]])
>>> x = ivy.native_array([1, 2, 3, 4], dtype = ivy.float32) >>> y = ivy.vector_norm(x, ord = 3.) >>> print(y)
ivy.array([4.64158917])
>>> x = ivy.array([1.,2.,3.,4.], dtype = ivy.float16) >>> z = ivy.empty(shape = 1, dtype=ivy.float16) >>> y = ivy.vector_norm(x, ord = 0, out = z) >>> print(y) ivy.array(4.)
>>> x = ivy.arange(8, dtype=ivy.float32).reshape((2,2,2)) >>> y = ivy.vector_norm(x, axis = (0,1), ord = float("-inf")) >>> print(y) ivy.array([0, 1])
>>> x = ivy.Container(a = [-1., 1., -2., 2.], b = [0., 1.2, 2.3, -3.1]) >>> y = ivy.vector_norm(x, ord = -1) >>> print(y) { a: ivy.array([0.33333334]), b: ivy.array([0.]) }
- ivy.vector_to_skew_symmetric_matrix(vector, /, *, out=None)[source]#
Given vector, return the associated Skew-symmetric matrix.
- Parameters:
- Return type:
- Returns:
ret – Skew-symmetric matrix (batch_shape,3,3).
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.
This should have hopefully given you an overview of the linear_algebra submodule, if you have any questions, please feel free to reach out on our discord!