conv3d#
- ivy.conv3d(x, filters, strides, padding, /, *, data_format='NDHWC', filter_format='channel_last', x_dilations=1, dilations=1, bias=None, out=None)[source]#
Compute a 3-D convolution given 5-D input x and filters arrays.
- Parameters:
x (
Union
[Array
,NativeArray
,Container
]) – Input volume [batch_size,d,h,w,d_in] or [batch_size,d_in,d,h,w].filters (
Union
[Array
,NativeArray
,Container
]) – Convolution filters [fd,fh,fw,d_in,d_out].strides (
Union
[int
,Tuple
[int
,int
,int
]]) – The stride of the sliding window for each dimension of input.padding (
Union
[str
,int
,Sequence
[Tuple
[int
,int
]]]) – either the string ‘SAME’ (padding with zeros evenly), the string ‘VALID’ (no padding), or a sequence of n (low, high) integer pairs that give the padding to apply before and after each spatial dimension.data_format (
str
, default:'NDHWC'
) – The ordering of the dimensions in the input, one of “NDHWC” or “NCDHW”. “NDHWC” corresponds to inputs with shape (batch_size, depth, height, width, channels), while “NCDHW” corresponds to input with shape (batch_size, channels, depth, height, width).filter_format (
str
, default:'channel_last'
) –- Either “channel_first” or “channel_last”. “channel_first” corresponds
to “OIDHW”,input data formats, while “channel_last” corresponds to “DHWIO”.
- x_dilations
The dilation factor for each dimension of input. (Default value = 1)
dilations (
Union
[int
,Tuple
[int
,int
,int
]], default:1
) – The dilation factor for each dimension of input. (Default value = 1)bias (
Optional
[Array
], default:None
) – Bias array of shape [d_out]out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – The result of the convolution operation.
Both the description and the type hints above assumes an array input for simplicity,
but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.
Examples
With
ivy.Array
input:>>> x = ivy.array([[[1., 2. ,1.], [1., 2. ,1.], [1., 2. ,1.]], ... [[1., 2. ,1.], [1., 2. ,1.], [1., 2. ,1.]], ... [[1., 2. ,1.], [1., 2. ,1.], [1., 2. ,1.]]]).reshape((1, 3, 3, 3, 1)) >>> filters = ivy.array([[[0.,1.,0.], ... [0.,1.,0.], ... [0.,1.,0.]]]).reshape((1,3,3,1,1)) >>> result = ivy.conv3d(x, filters, 1, 'SAME', data_format='NDHWC', dilations=1) >>> print(result) ivy.array([[[[[2.],[4.],[2.]],[[3.],[6.],[3.]],[[2.],[4.],[2.]]], [[[2.],[4.],[2.]],[[3.],[6.],[3.]],[[2.],[4.],[2.]]], [[[2.],[4.],[2.]],[[3.],[6.],[3.]],[[2.],[4.],[2.]]]]])
With one
ivy.Container
input:>>> x = ivy.Container(a = ivy.ones((1, 3, 3, 3, 1)).astype(ivy.float32)) >>> filters = ivy.ones((3, 3, 3, 1, 1)).astype(ivy.float32) >>> result = ivy.conv3d(x, filters, 2, 'SAME') >>> print(result) { a: ivy.array([[[[[8.],[8.]],[[8.],[8.]]],[[[8.],[8.]],[[8.],[8.]]]]]) }
With multiple
ivy.Container
input:>>> x = ivy.Container( a = ivy.random_normal(mean = 0, std = 1, ... shape = [1, 3, 5, 5, 1]), ... b = ivy.random_normal(mean = 0, std = 1, ... shape = [1, 5, 32 ,32, 1]), ... c = ivy.random_normal(mean = 0, std = 1, ... shape = [1, 32, 32, 32, 1])) >>> filters = ivy.ones((3, 5, 5, 1, 3)).astype(ivy.float32) >>> result = ivy.conv3d(x, filters, 1, 'SAME') >>> print(result.cont_shapes) { a: ivy.Shape(1, 3, 5, 5, 3), b: ivy.Shape(1, 5, 32, 32, 3), c: ivy.Shape(1, 32, 32, 32, 3) }
- Array.conv3d(self, filters, strides, padding, /, *, data_format='NDHWC', filter_format='channel_last', x_dilations=1, dilations=1, bias=None, out=None)[source]#
ivy.Array instance method variant of ivy.conv3d. This method simply wraps the function, and so the docstring for ivy.conv3d also applies to this method with minimal changes.
- Parameters:
x – Input volume [batch_size,d,h,w,d_in].
filters (
Union
[Array
,NativeArray
]) – Convolution filters [fd,fh,fw,d_in,d_out].strides (
Union
[int
,Tuple
[int
,int
,int
]]) – The stride of the sliding window for each dimension of input.padding (
str
) – “SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.data_format (
str
, default:'NDHWC'
) – “NDHWC” or “NCDHW”. Defaults to “NDHWC”.filter_format (
str
, default:'channel_last'
) – Either “channel_first” or “channel_last”. Defaults to “channel_last”.x_dilations (
Union
[int
,Tuple
[int
,int
,int
]], default:1
) – The dilation factor for each dimension of input. (Default value = 1)dilations (
Union
[int
,Tuple
[int
,int
,int
]], default:1
) – The dilation factor for each dimension of input. (Default value = 1)bias (
Optional
[Array
], default:None
) – Bias array of shape [d_out].out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – The result of the convolution operation.
Examples
>>> x = ivy.ones((1, 3, 3, 3, 1)).astype(ivy.float32)
>>> filters = ivy.ones((1, 3, 3, 1, 1)).astype(ivy.float32)
>>> result = x.conv3d(filters, 2, 'SAME') >>> print(result) ivy.array([[[[[4.],[4.]],[[4.],[4.]]],[[[4.],[4.]],[[4.],[4.]]]]])
- Container.conv3d(self, filters, strides, padding, /, *, data_format='NDHWC', filter_format='channel_last', x_dilations=1, dilations=1, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, bias=None, out=None)[source]#
ivy.Container instance method variant of ivy.conv3d. This method simply wraps the function, and so the docstring for ivy.conv3d also applies to this method with minimal changes.
- Parameters:
x – Input volume [batch_size,d,h,w,d_in].
filters (
Union
[Array
,NativeArray
,Container
]) – Convolution filters [fdfh,fw,d_in,d_out].strides (
Union
[int
,Tuple
[int
,int
,int
],Container
]) – The stride of the sliding window for each dimension of input.padding (
Union
[str
,Container
]) – “SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.data_format (
str
, default:'NDHWC'
) – “NDHWC” or “NCDHW”. Defaults to “NDHWC”.filter_format (
str
, default:'channel_last'
) – Either “channel_first” or “channel_last”. Defaults to “channel_last”.x_dilations (
Union
[int
,Tuple
[int
,int
,int
]], default:1
) – The dilation factor for each dimension of input. (Default value = 1)dilations (
Union
[int
,Tuple
[int
,int
,int
]], default:1
) – The dilation factor for each dimension of input. (Default value = 1)bias (
Optional
[Container
], default:None
) – Bias array of shape [d_out].out (
Optional
[Container
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container
- Returns:
ret – The result of the convolution operation.
Examples
>>> x = ivy.Container(a = ivy.full((1, 2, 3, 3, 1),0.5), b = ivy.full((1, 2, 5, 5, 1),1.))
>>> filters = ivy.ones((3, 3, 3, 1, 1))
>>> result = x.conv3d(filters, 2, 'SAME') >>> print(result) { a: ivy.array([[[[[4.],[4.]],[[4.],[4.]]]]]), b: ivy.array([[[[[8.],[12.],[8.]],[[12.],[18.],[12.]],[[8.],[12.],[8.]]]]]) }