logical_xor#
- ivy.logical_xor(x1, x2, /, *, out=None)[source]#
Compute the bitwise XOR of the underlying binary representation of each element
x1_i
of the input arrayx1
with the respective elementx2_i
of the input arrayx2
.- Parameters:
x1 (
Union
[Array
,NativeArray
]) – first input array. Should have an integer or boolean data type.x2 (
Union
[Array
,NativeArray
]) – second input array. Must be compatible withx1
(see broadcasting). Should have an integer or boolean data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments- Return type:
- Returns:
ret – an array containing the element-wise results. The returned array must have a data type determined by type-promotion.
Examples
With
ivy.Array
inputs:>>> x = ivy.array([1,0,1,1,0]) >>> y = ivy.array([1,0,1,1,0]) >>> z = ivy.logical_xor(x,y) >>> print(z) ivy.array([False, False, False, False, False])
>>> x = ivy.array([[[1], [2], [3], [4]]]) >>> y = ivy.array([[[4], [5], [6], [7]]]) >>> z = ivy.logical_xor(x,y) >>> print(z) ivy.array([[[False], [False], [False], [False]]])
>>> x = ivy.array([[[1], [2], [3], [4]]]) >>> y = ivy.array([4, 5, 6, 7]) >>> z = ivy.logical_xor(x,y) >>> print(z) ivy.array([[[False, False, False, False], [False, False, False, False], [False, False, False, False], [False, False, False, False]]])
With
ivy.Container
inputs:>>> x = ivy.Container(a=ivy.array([1,0,0,1,0]), b=ivy.array([1,0,1,0,0])) >>> y = ivy.Container(a=ivy.array([0,0,1,1,0]), b=ivy.array([1,0,1,1,0])) >>> z = ivy.logical_xor(x,y) >>> print(z) { a: ivy.array([True, False, True, False, False]), b: ivy.array([False, False, False, True, False]) }
With a mix of
ivy.Array
andivy.Container
inputs:>>> x = ivy.Container(a=ivy.array([1,0,0,1,0]), b=ivy.array([1,0,1,0,0])) >>> y = ivy.array([0,0,1,1,0]) >>> z = ivy.logical_xor(x,y) >>> print(z) { a: ivy.array([True, False, True, False, False]), b: ivy.array([True, False, False, True, False]) }
- Array.logical_xor(self, x2, /, *, out=None)[source]#
ivy.Array instance method variant of ivy.logical_xor. This method simply wraps the function, and so the docstring for ivy.logical_xor also applies to this method with minimal changes.
- Parameters:
self (
Array
) – first input array. Should have a boolean data type.x2 (
Union
[Array
,NativeArray
]) – second input array. Must be compatible withself
(see broadcasting). Should have a real-valued data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the element-wise results. The returned array must have a data type of
bool
.
Examples
>>> x = ivy.array([True, False, True, False]) >>> y = ivy.array([True, True, False, False]) >>> z = x.logical_xor(y) >>> print(z) ivy.array([False, True, True, False])
- Container.logical_xor(self, x2, /, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#
ivy.Container instance method variant of ivy.logical_xor. This method simply wraps the function, and so the docstring for ivy.logical_xor also applies to this method with minimal changes.
- Parameters:
self (
Container
) – input array or container. Should have a boolean data type.x2 (
Union
[Container
,Array
,NativeArray
]) – input array or container. Must be compatible withself
(see broadcasting). Should have a boolean data type.key_chains (
Optional
[Union
[List
[str
],Dict
[str
,str
],Container
]], default:None
) – The key-chains to apply or not apply the method to. Default isNone
.to_apply (
Union
[bool
,Container
], default:True
) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default isTrue
.prune_unapplied (
Union
[bool
,Container
], default:False
) – Whether to prune key_chains for which the function was not applied. Default isFalse
.map_sequences (
Union
[bool
,Container
], default:False
) – Whether to also map method to sequences (lists, tuples). Default isFalse
.out (
Optional
[Container
], default:None
) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container
- Returns:
ret – a container containing the element-wise results. The returned container must have a data type of
bool
.
Examples
>>> x = ivy.Container(a=ivy.array([1,0,0,1,0]), b=ivy.array([1,0,1,0,0])) >>> y = ivy.Container(a=ivy.array([0,0,1,1,0]), b=ivy.array([1,0,1,1,0])) >>> z = x.logical_xor(y) >>> print(z) { a: ivy.array([True, False, True, False, False]), b: ivy.array([False, False, False, True, False]) }