full#
- ivy.full(shape, fill_value, /, *, dtype=None, device=None, out=None)[source]#
Return a new array having a specified
shape
and filled withfill_value
.- Parameters:
shape (
Union
[Shape
,NativeShape
]) – output array shape.fill_value (
Union
[float
,bool
]) – fill value.dtype (
Optional
[Union
[Dtype
,NativeDtype
]], default:None
) – output array data type. Ifdtype
is None, the output array data type must be inferred fromfill_value
. If the fill value is anint
, the output array data type must be the default integer data type. If the fill value is afloat
, the output array data type must be the default floating-point data type. If the fill value is abool
, the output array must have boolean data type. Default:None
.device (
Optional
[Union
[Device
,NativeDevice
]], default:None
) – device on which to place the created array. Default:None
.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – an array where every element is equal to fill_value.
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.Examples
With
ivy.Shape
input:>>> shape = ivy.Shape((2,2)) >>> fill_value = 8.6 >>> x = ivy.full(shape, fill_value) >>> print(x) ivy.array([[8.6, 8.6], [8.6, 8.6]])
With
ivy.NativeShape
input:>>> shape = ivy.NativeShape((2, 2, 2)) >>> fill_value = True >>> dtype = ivy.bool >>> device = ivy.Device('cpu') >>> x = ivy.full(shape, fill_value, dtype=dtype, device=device) >>> print(x) ivy.array([[[True, True], [True, True]], [[True, True], [True, True]]])
With
ivy.NativeDevice
input:>>> shape = ivy.NativeShape((1, 2)) >>> fill_value = 0.68 >>> dtype = ivy.float64 >>> device = ivy.NativeDevice('cpu') >>> x = ivy.full(shape, fill_value, dtype=dtype, device=device) >>> print(x) ivy.array([[0.68, 0.68]])
With
ivy.Container
input:>>> shape = ivy.Container(a=ivy.NativeShape((2, 1)), b=ivy.Shape((2, 1, 2))) >>> fill_value = ivy.Container(a=0.99, b=False) >>> dtype = ivy.Container(a=ivy.float64, b=ivy.bool) >>> device = ivy.Container(a=ivy.NativeDevice('cpu'), b=ivy.Device('cpu')) >>> x = ivy.full(shape, fill_value, dtype=dtype, device=device) >>> print(x) { a: ivy.array([[0.99], [0.99]]), b: ivy.array([[[False, False]], [[False, False]]]) }