add#
- ivy.add(x1, x2, /, *, alpha=None, out=None)[source]#
Calculate the sum for each element
x1_i
of the input arrayx1
with the respective elementx2_i
of the input arrayx2
.Special cases
For floating-point operands,
If either
x1_i
orx2_i
isNaN
, the result isNaN
.If
x1_i
is+infinity
andx2_i
is-infinity
, the result isNaN
.If
x1_i
is-infinity
andx2_i
is+infinity
, the result isNaN
.If
x1_i
is+infinity
andx2_i
is+infinity
, the result is+infinity
.If
x1_i
is-infinity
andx2_i
is-infinity
, the result is-infinity
.If
x1_i
is+infinity
andx2_i
is a finite number, the result is+infinity
.If
x1_i
is-infinity
andx2_i
is a finite number, the result is-infinity
.If
x1_i
is a finite number andx2_i
is+infinity
, the result is+infinity
.If
x1_i
is a finite number andx2_i
is-infinity
, the result is-infinity
.If
x1_i
is-0
andx2_i
is-0
, the result is-0
.If
x1_i
is-0
andx2_i
is+0
, the result is+0
.If
x1_i
is+0
andx2_i
is-0
, the result is+0
.If
x1_i
is+0
andx2_i
is+0
, the result is+0
.If
x1_i
is either+0
or-0
andx2_i
is a nonzero finite number, the result isx2_i
.If
x1_i
is a nonzero finite number andx2_i
is either+0
or-0
, the result isx1_i
.If
x1_i
is a nonzero finite number andx2_i
is-x1_i
, the result is+0
.In the remaining cases, when neither
infinity
,+0
,-0
, nor aNaN
is involved, and the operands have the same mathematical sign or have different magnitudes, the sum must be computed and rounded to the nearest representable value according to IEEE 754-2019 and a supported round mode. If the magnitude is too large to represent, the operation overflows and the result is an infinity of appropriate mathematical sign.
Note
Floating-point addition is a commutative operation, but not always associative.
For complex floating-point operands, addition is defined according to the following table. For real components
a
andc
, and imaginary componentsb
andd
,c
dj
c+dj
a
a + c
a + dj
(a+c) + dj
bj
c + bj
(b+d)j
c + (b+d)j
a+bj
(a+c) + bj
a + (b+d)j
(a+c) + (b+d)j
For complex floating-point operands, the real valued floating-point special cases must independently apply to the real and imaginary component operation involving real numbers as described in the above table. For example, let
a = real(x1_i)
,c = real(x2_i)
,d = imag(x2_i)
, and - ifa
is-0
, the real component of the result is-0
. - Similarly, ifb
is+0
andd
is-0
, the imaginary component of the result is+0
.Hence, if
z1 = a + bj = -0 + 0j
andz2 = c + dj = -0 - 0j
, then the result ofz1 + z2
is-0 + 0j
.- Parameters:
x1 (
Union
[float
,Array
,NativeArray
]) – first input array. Should have a numeric data type.x2 (
Union
[float
,Array
,NativeArray
]) – second input array. Must be compatible withx1
(see broadcasting). Should have a numeric data type.alpha (
Optional
[Union
[int
,float
]], default:None
) – optional scalar multiplier forx2
.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – an array containing the element-wise sums. The returned array must have a data type determined by type-promotion.
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the argumentsExamples
With
ivy.Array
inputs:>>> x = ivy.array([1, 2, 3]) >>> y = ivy.array([4, 5, 6]) >>> z = ivy.add(x, y) >>> print(z) ivy.array([5, 7, 9])
>>> x = ivy.array([1, 2, 3]) >>> y = ivy.array([4, 5, 6]) >>> z = ivy.add(x, y, alpha=2) >>> print(z) ivy.array([9, 12, 15])
>>> x = ivy.array([[1.1, 2.3, -3.6]]) >>> y = ivy.array([[4.8], [5.2], [6.1]]) >>> z = ivy.zeros((3, 3)) >>> ivy.add(x, y, out=z) >>> print(z) ivy.array([[5.9, 7.1, 1.2], [6.3, 7.5, 1.6], [7.2, 8.4, 2.5]])
>>> x = ivy.array([[[1.1], [3.2], [-6.3]]]) >>> y = ivy.array([[8.4], [2.5], [1.6]]) >>> ivy.add(x, y, out=x) >>> print(x) ivy.array([[[9.5], [5.7], [-4.7]]])
- Array.add(self, x2, /, *, alpha=None, out=None)[source]#
ivy.Array instance method variant of ivy.add. This method simply wraps the function, and so the docstring for ivy.add also applies to this method with minimal changes.
- Parameters:
self (
Array
) – first input array. Should have a numeric data type.x2 (
Union
[Array
,NativeArray
]) – second input array. Must be compatible withself
(see broadcasting). Should have a numeric data type.alpha (
Optional
[Union
[int
,float
]], default:None
) – optional scalar multiplier forx2
.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the element-wise sums. The returned array must have a data type determined by type-promotion.
Examples
>>> x = ivy.array([1, 2, 3]) >>> y = ivy.array([4, 5, 6]) >>> z = x.add(y) >>> print(z) ivy.array([5, 7, 9])
>>> x = ivy.array([1, 2, 3]) >>> y = ivy.array([4, 5, 6]) >>> z = x.add(y, alpha=2) >>> print(z) ivy.array([9, 12, 15])
- Container.add(self, x2, /, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, alpha=None, out=None)[source]#
ivy.Container instance method variant of ivy.add. This method simply wraps the function, and so the docstring for ivy.add also applies to this method with minimal changes.
- Parameters:
self (
Container
) – first input container. Should have a numeric data type.x2 (
Union
[Container
,Array
,NativeArray
]) – second input array or container. Must be compatible withself
(see broadcasting). Should have a numeric data type.key_chains (
Optional
[Union
[List
[str
],Dict
[str
,str
],Container
]], default:None
) – The key-chains to apply or not apply the method to. Default isNone
.to_apply (
Union
[bool
,Container
], default:True
) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default isTrue
.prune_unapplied (
Union
[bool
,Container
], default:False
) – Whether to prune key_chains for which the function was not applied. Default isFalse
.map_sequences (
Union
[bool
,Container
], default:False
) – Whether to also map method to sequences (lists, tuples). Default isFalse
.alpha (
Optional
[Union
[int
,float
,Container
]], default:None
) – scalar multiplier forx2
.out (
Optional
[Container
], default:None
) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container
- Returns:
ret – a container containing the element-wise sums. The returned container must have a data type determined by type-promotion.
Examples
>>> x = ivy.Container(a=ivy.array([1, 2, 3]), ... b=ivy.array([2, 3, 4])) >>> y = ivy.Container(a=ivy.array([4, 5, 6]), ... b=ivy.array([5, 6, 7]))
>>> z = x.add(y) >>> print(z) { a: ivy.array([5, 7, 9]), b: ivy.array([7, 9, 11]) }
>>> z = x.add(y, alpha=3) >>> print(z) { a: ivy.array([13, 17, 21]), b: ivy.array([17, 21, 25]) }