initialize_tucker#
- ivy.initialize_tucker(x, rank, modes, /, *, init='svd', seed=None, svd='truncated_svd', non_negative=False, mask=None, svd_mask_repeats=5)[source]#
Initialize core and factors used in tucker. The type of initialization is set using init. If init == ‘random’ then initialize factor matrices using random_state. If init == ‘svd’ then initialize the m`th factor matrix using the `rank left singular vectors of the `m`th unfolding of the input tensor.
- Parameters:
x (
Union
[Array
,NativeArray
]) – input tensorrank (
Sequence
[int
]) – number of componentsmodes (
Sequence
[int
]) – modes to consider in the input tensorseed (
Optional
[int
], default:None
) – Used to create a random seed distribution when init == ‘random’init (
Optional
[Union
[Literal
['svd'
,'random'
],TuckerTensor
]], default:'svd'
) – initialization scheme for tucker decomposition.svd (
Optional
[Literal
['truncated_svd'
]], default:'truncated_svd'
) – function to use to compute the SVDnon_negative (
Optional
[bool
], default:False
) – if True, non-negative factors are returnedmask (
Optional
[Union
[Array
,NativeArray
]], default:None
) – array of booleans with the same shape astensor
should be 0 where the values are missing and 1 everywhere else. Note: if tensor is sparse, then mask should also be sparse with a fill value of 1 (or True).svd_mask_repeats (
Optional
[int
], default:5
) – number of iterations for imputing the values in the SVD matrix when mask is not None
- Return type:
- Returns:
core – initialized core tensor
factors – list of factors
- Array.initialize_tucker(self, rank, modes, /, *, init='svd', seed=None, svd='truncated_svd', non_negative=False, mask=None, svd_mask_repeats=5)[source]#
ivy.Array instance method variant of ivy.initialize_tucker. This method simply wraps the function, and so the docstring for ivy.initialize_tucker also applies to this method with minimal changes.
- Parameters:
self (
Union
[Array
,NativeArray
]) – input tensorrank (
Sequence
[int
]) – number of componentsmodes (
Sequence
[int
]) – modes to consider in the input tensorseed (
Optional
[int
], default:None
) – Used to create a random seed distribution when init == ‘random’init (
Optional
[Union
[Literal
['svd'
,'random'
],TuckerTensor
]], default:'svd'
) – initialization scheme for tucker decomposition.svd (
Optional
[Literal
['truncated_svd'
]], default:'truncated_svd'
) – function to use to compute the SVDnon_negative (
Optional
[bool
], default:False
) – if True, non-negative factors are returnedmask (
Optional
[Union
[Array
,NativeArray
]], default:None
) – array of booleans with the same shape astensor
should be 0 where the values are missing and 1 everywhere else. Note: if tensor is sparse, then mask should also be sparse with a fill value of 1 (or True).svd_mask_repeats (
Optional
[int
], default:5
) – number of iterations for imputing the values in the SVD matrix when mask is not None
- Return type:
Tuple
[Array
,Sequence
[Array
]]- Returns:
core – initialized core tensor
factors – list of factors
- Container.initialize_tucker(self, rank, modes, /, *, init='svd', seed=None, svd='truncated_svd', non_negative=False, mask=None, svd_mask_repeats=5, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#
ivy.Container instance method variant of ivy.initialize_tucker. This method simply wraps the function, and so the docstring for ivy.initialize_tucker also applies to this method with minimal changes.
- Parameters:
x – input tensor
rank (
Union
[Sequence
[int
],Container
]) – number of componentsmodes (
Union
[Sequence
[int
],Container
]) – modes to consider in the input tensorseed (
Optional
[Union
[int
,Container
]], default:None
) – Used to create a random seed distribution when init == ‘random’init (
Optional
[Union
[Literal
['svd'
,'random'
],TuckerTensor
,Container
]], default:'svd'
) – initialization scheme for tucker decomposition.svd (
Optional
[Union
[Literal
['truncated_svd'
],Container
]], default:'truncated_svd'
) – function to use to compute the SVDnon_negative (
Optional
[Union
[bool
,Container
]], default:False
) – if True, non-negative factors are returnedmask (
Optional
[Union
[Array
,NativeArray
,Container
]], default:None
) – array of booleans with the same shape astensor
should be 0 where the values are missing and 1 everywhere else. Note: if tensor is sparse, then mask should also be sparse with a fill value of 1 (or True).svd_mask_repeats (
Optional
[Union
[int
,Container
]], default:5
) – number of iterations for imputing the values in the SVD matrix when mask is not None
- Return type:
Tuple
[Container
,Sequence
[Container
]]- Returns:
core – initialized core tensor
factors – list of factors