max_pool1d#
- ivy.max_pool1d(x, kernel, strides, padding, /, *, data_format='NWC', dilation=1, ceil_mode=False, out=None)[source]#
Compute a 1-D max pool given 3-D input x.
- Parameters:
x (
Union
[Array
,NativeArray
]) – Input image [batch_size, w, d_in] if data_format is “NWC”.kernel (
Union
[int
,Tuple
[int
,...
]]) – Size of the kernel i.e., the sliding window for each dimension of input. [w].strides (
Union
[int
,Tuple
[int
,...
]]) – The stride of the sliding window for each dimension of input.padding (
Union
[str
,int
,Tuple
[int
],List
[Tuple
[int
,int
]]]) – “SAME” or “VALID” indicating the algorithm; int, or list of tuple indicating the per-dimension paddings. (e.g. 2, [(1, 0)])data_format (
str
, default:'NWC'
) – “NWC” or “NCW”. Defaults to “NWC”.dilation (
Union
[int
,Tuple
[int
]], default:1
) – The stride between elements within a sliding window, must be > 0.ceil_mode (
bool
, default:False
) – If True, ceil is used instead of floor to compute the output shape. This ensures that every element in ‘x’ is covered by a sliding window.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to.
- Return type:
- Returns:
ret – The result of the pooling operation.
Both the description and the type hints above assumes an array input
for simplicity, but this function is *nestable, and therefore*
also accepts
ivy.Container
instances in place of any ofthe arguments.
Examples
>>> x = ivy.arange(0, 24.).reshape((2, 3, 4)) >>> print(ivy.max_pool1d(x, 2, 2, 'SAME')) ivy.array([[[ 4., 5., 6., 7.], [ 8., 9., 10., 11.]],
- [[16., 17., 18., 19.],
[20., 21., 22., 23.]]])
>>> x = ivy.arange(0, 24.).reshape((2, 3, 4)) >>> print(ivy.max_pool1d(x, 2, 2, 'VALID')) ivy.array([[[ 4., 5., 6., 7.]],
[[16., 17., 18., 19.]]])
>>> x = ivy.arange(0, 24.).reshape((2, 3, 4)) >>> print(ivy.max_pool1d(x, 2, 2, [(1,0)], data_format="NCW", dilation=1, ceil_mode=True)) ivy.array([[[ 0., 2., 3.], [ 4., 6., 7.], [ 8., 10., 11.]],
- [[12., 14., 15.],
[16., 18., 19.], [20., 22., 23.]]])
- Array.max_pool1d(self, kernel, strides, padding, /, *, data_format='NWC', dilation=1, ceil_mode=False, out=None)[source]#
ivy.Array instance method variant of ivy.max_pool1d. This method simply wraps the function, and so the docstring for ivy.max_pool1d also applies to this method with minimal changes.
- Parameters:
self (
Array
) – Input image [batch_size,w,d_in].kernel (
Union
[int
,Tuple
[int
,...
]]) – The size of the window for each dimension of the input tensor.strides (
Union
[int
,Tuple
[int
,...
]]) – The stride of the sliding window for each dimension of input.padding (
Union
[str
,int
,Tuple
[int
],List
[Tuple
[int
,int
]]]) – “SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.data_format (
str
, default:'NWC'
) – “NWC” or “NCW”. Defaults to “NWC”.dilaton – The stride between elements within a sliding window, must be > 0.
ceil_mode (
bool
, default:False
) – If True, ceil is used instead of floor to compute the output shape. This ensures that every element is covered by a sliding window.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – The result of the max pooling operation.
Examples
>>> x = ivy.arange(0, 24.).reshape((2, 3, 4)) >>> print(x.max_pool1d(2, 2, 'SAME')) ivy.array([[[ 4., 5., 6., 7.], [ 8., 9., 10., 11.]], [[16., 17., 18., 19.], [20., 21., 22., 23.]]]) >>> x = ivy.arange(0, 24.).reshape((2, 3, 4)) >>> print(x.max_pool1d(2, 2, 'VALID')) ivy.array([[[ 4., 5., 6., 7.]], [[16., 17., 18., 19.]]])
- Container.max_pool1d(self, kernel, strides, padding, /, *, data_format='NWC', dilation=1, ceil_mode=False, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#
ivy.Container instance method variant of ivy.max_pool1d. This method simply wraps the function, and so the docstring for ivy.max_pool1d also applies to this method with minimal changes.
- Parameters:
self (
Container
) – Container of input images [batch_size, w, d_in].kernel (
Union
[int
,Tuple
[int
,...
],Container
]) – Size of the kernel i.e., the sliding window for each dimension of input. [w].strides (
Union
[int
,Tuple
[int
,...
],Container
]) – The stride of the sliding window for each dimension of input.padding (
Union
[str
,int
,Tuple
[int
],List
[Tuple
[int
,int
]],Container
]) – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.data_format (
Union
[str
,Container
], default:'NWC'
) – “NWC” or “NCW”. Defaults to “NWC”.dilaton – The stride between elements within a sliding window, must be > 0.
ceil_mode (
Union
[bool
,Container
], default:False
) – If True, ceil is used instead of floor to compute the output shape. This ensures that every element is covered by a sliding window.out (
Optional
[Container
], default:None
) – optional output array, for writing the result to.
- Return type:
Container
- Returns:
ret – The result of the pooling operation.
Examples
>>> a = ivy.arange(12.).reshape((2,2,3)) >>> b = ivy.arange(24.).reshape((2,3,4)) >>> x = ivy.Container({'a': a, 'b': b}) >>> print(x.max_pool1d(2, 2, "VALID")) { a: ivy.array([[[3., 4., 5.]], [[9., 10., 11.]]]), b: ivy.array([[[4., 5., 6., 7.]], [[16., 17., 18., 19.]]]) }