Data type#

ivy.as_ivy_dtype(dtype_in, /)[source]#

Convert native data type to string representation.

Parameters:

dtype_in (Union[Dtype, str]) – The data type to convert to string.

Return type:

Dtype

Returns:

ret – data type string ‘float32’

ivy.as_native_dtype(dtype_in, /)[source]#

Convert data type string representation to native data type.

Parameters:

dtype_in (Union[Dtype, NativeDtype]) – The data type string to convert to native data type.

Return type:

NativeDtype

Returns:

ret – data type e.g. ivy.float32.

ivy.astype(x, dtype, /, *, copy=True, out=None)[source]#

Copy an array to a specified data type irrespective of type- promotion rules.

Casting floating-point NaN and infinity values to integral data types is not specified and is implementation-dependent.

When casting a boolean input array to a numeric data type, a value of True must cast to a numeric value equal to 1, and a value of False must cast to a numeric value equal to 0.

When casting a numeric input array to bool, a value of 0 must cast to False, and a non-zero value must cast to True.

Parameters:
  • x (Union[Array, NativeArray]) – array to cast.

  • dtype (Union[Dtype, NativeDtype]) – desired data type.

  • copy (bool, default: True) – specifies whether to copy an array when the specified dtype matches the data type of the input array x. If True, a newly allocated array must always be returned. If False and the specified dtype matches the data type of the input array, the input array must be returned; otherwise, a newly allocated must be returned. Default: True.

  • out (Optional[Array], default: None) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.

Return type:

Array

Returns:

ret – an array having the specified data type. The returned array must have the same shape as x.

Examples

With ivy.Array input:

>>> x = ivy.array([1, 2])
>>> y = ivy.zeros_like(x)
>>> y = ivy.astype(x, ivy.float64)
>>> print(y)
ivy.array([1., 2.])
>>> x = ivy.array([3.141, 2.718, 1.618])
>>> y = ivy.zeros_like(x)
>>> ivy.astype(x, ivy.int32, out=y)
>>> print(y)
ivy.array([3., 2., 1.])
>>> x = ivy.array([[-1, -2], [0, 2]])
>>> ivy.astype(x, ivy.float64, out=x)
>>> print(x)
ivy.array([[-1., -2.],  [0.,  2.]])

With ivy.NativeArray input:

>>> x = ivy.native_array([3.141, 2.718, 1.618])
>>> y = ivy.astype(x, ivy.int32)
>>> print(y)
ivy.array([3, 2, 1])

With ivy.Container input:

>>> x = ivy.Container(a=ivy.array([0,2,1]),b=ivy.array([1,0,0]))
>>> print(ivy.astype(x, ivy.bool))
{
    a: ivy.array([False, True, True]),
    b: ivy.array([True, False, False])
}

With ivy.Array instance method:

>>> x = ivy.array([[-1, -2], [0, 2]])
>>> print(x.astype(ivy.float64))
ivy.array([[-1., -2.],  [0.,  2.]])

With ivy.Container instance method:

>>> x = ivy.Container(a=ivy.array([False,True,True]),
...                   b=ivy.array([3.14, 2.718, 1.618]))
>>> print(x.astype(ivy.int32))
{
    a: ivy.array([0, 1, 1]),
    b: ivy.array([3, 2, 1])
}
ivy.broadcast_arrays(*arrays)[source]#

Broadcasts one or more arrays against one another.

Parameters:

arrays (Union[Array, NativeArray]) – an arbitrary number of arrays to-be broadcasted.

Return type:

List[Array]

Returns:

ret – A list containing broadcasted arrays of type ivy.Array Each array must have the same shape, and each array must have the same dtype as its corresponding input array.

Examples

With ivy.Array input:

>>> x1 = ivy.array([1, 2, 3])
>>> x2 = ivy.array([4, 5, 6])
>>> y = ivy.broadcast_arrays(x1, x2)
>>> print(y)
[ivy.array([1, 2, 3]), ivy.array([4, 5, 6])]

With ivy.NativeArray inputs:

>>> x1 = ivy.native_array([0.3, 4.3])
>>> x2 = ivy.native_array([3.1, 5])
>>> x3 = ivy.native_array([2, 0])
>>> y = ivy.broadcast_arrays(x1, x2, x3)
[ivy.array([0.3, 4.3]), ivy.array([3.1, 5.]), ivy.array([2, 0])]

With mixed ivy.Array and ivy.NativeArray inputs:

>>> x1 = ivy.array([1, 2])
>>> x2 = ivy.native_array([0.3, 4.3])
>>> y = ivy.broadcast_arrays(x1, x2)
>>> print(y)
[ivy.array([1, 2]), ivy.array([0.3, 4.3])]

With ivy.Container inputs:

>>> x1 = ivy.Container(a=ivy.array([3, 1]), b=ivy.zeros(2))
>>> x2 = ivy.Container(a=ivy.array([4, 5]), b=ivy.array([2, -1]))
>>> y = ivy.broadcast_arrays(x1, x2)
>>> print(y)
[{
    a: ivy.array([3, 1]),
    b: ivy.array([0., 0.])
}, {
    a: ivy.array([4, 5]),
    b: ivy.array([2, -1])
}]

With mixed ivy.Array and ivy.Container inputs:

>>> x1 = ivy.zeros(2)
>>> x2 = ivy.Container(a=ivy.array([4, 5]), b=ivy.array([2, -1]))
>>> y = ivy.broadcast_arrays(x1, x2)
>>> print(y)
[{
    a: ivy.array([0., 0.]),
    b: ivy.array([0., 0.])
}, {
    a: ivy.array([4, 5]),
    b: ivy.array([2, -1])
}]
ivy.broadcast_to(x, /, shape, *, out=None)[source]#

Broadcasts an array to a specified shape.

Parameters:
  • x (Union[Array, NativeArray]) – array to broadcast.

  • shape (Tuple[int, ...]) – array shape. Must be compatible with x (see Broadcasting). If the array is incompatible with the specified shape, the function should raise an exception.

  • out (Optional[Array], default: None) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.

Return type:

Array

Returns:

ret – an array having a specified shape. Must have the same data type as x.

Examples

With ivy.Array input:

>>> x = ivy.array([1, 2, 3])
>>> y = ivy.broadcast_to(x, (3, 3))
>>> print(y)
ivy.array([[1, 2, 3],
        [1, 2, 3],
        [1, 2, 3]])

With ivy.NativeArray input:

>>> x = ivy.native_array([0.1 , 0.3])
>>> y = ivy.broadcast_to(x, (3, 2))
>>> print(y)
ivy.array([[0.1, 0.3],
        [0.1, 0.3],
        [0.1, 0.3]])

With ivy.Container input:

>>> x = ivy.Container(a=ivy.array([1, 2, 3]),
...                   b=ivy.array([4, 5, 6]))
>>> y = ivy.broadcast_to(x, (3, 3))
>>> print(y)
{
    a: ivy.array([[1, 2, 3],
                [1, 2, 3],
                [1, 2, 3]]),
    b: ivy.array([[4, 5, 6],
                [4, 5, 6],
                [4, 5, 6]])
}
ivy.can_cast(from_, to, /)[source]#

Determine if one data type can be cast to another data type according to type- promotion rules.

Parameters:
  • from – input data type or array from which to cast.

  • to (Dtype) – desired data type.

Return type:

bool

Returns:

  • retTrue if the cast can occur according to type-promotion rules; otherwise, False.

  • This function conforms to the `Array API Standard

  • <https (//data-apis.org/array-api/latest/>`_. This docstring is an extension of the)

  • `docstring <https (//data-apis.org/array-api/latest/)

  • API_specification/generated/array_api.can_cast.html>`_

  • in the standard.

  • Both the description and the type hints above assumes an array input for simplicity,

  • but this function is nestable, and therefore also accepts ivy.Container

  • instances in place of any of the arguments.

Examples

With ivy.Dtype input:

>>> print(ivy.can_cast(ivy.uint8, ivy.int32))
True
>>> print(ivy.can_cast(ivy.float64, 'int64'))
False

With ivy.Array input:

>>> x = ivy.array([1., 2., 3.])
>>> print(ivy.can_cast(x, ivy.float64))
True

With ivy.NativeArray input:

>>> x = ivy.native_array([[-1, -1, -1],
...                       [1, 1, 1]],
...                       dtype='int16')
>>> print(ivy.can_cast(x, 'uint8'))
False

With ivy.Container input:

>>> x = ivy.Container(a=ivy.array([0., 1., 2.]),
...                   b=ivy.array([3, 4, 5]))
>>> print(ivy.can_cast(x, 'int64'))
{
    a: False,
    b: True
}
ivy.check_float(x)[source]#

Check if the input is a float or a float-like object.

Parameters:

x (Any) – Input to check.

Return type:

bool

Returns:

ret – “True” if the input is a float or a float-like object, otherwise “False”.

ivy.closest_valid_dtype(type, /)[source]#

Determine the closest valid datatype to the datatype passed as input.

Parameters:

type (Optional[Union[Dtype, str]]) – The data type for which to check the closest valid type for.

Return type:

Union[Dtype, str]

Returns:

ret – The closest valid data type as a native ivy.Dtype

Examples

With ivy.Dtype input:

>>> xType = ivy.float16
>>> yType = ivy.closest_valid_dtype(xType)
>>> print(yType)
float16

With ivy.NativeDtype inputs:

>>> xType = ivy.native_uint16
>>> yType = ivy.closest_valid_dtype(xType)
>>> print(yType)
uint16

With str input:

>>> xType = 'int32'
>>> yType = ivy.closest_valid_dtype(xType)
>>> print(yType)
int32
ivy.default_complex_dtype(*, input=None, complex_dtype=None, as_native=False)[source]#
Parameters:
  • input (Optional[Union[Array, NativeArray]], default: None) – Number or array for inferring the complex dtype.

  • complex_dtype (Optional[Union[ComplexDtype, NativeDtype]], default: None) – The complex dtype to be returned.

  • as_native (bool, default: False) – Whether to return the complex dtype as native dtype.

Return type:

Union[Dtype, str, NativeDtype]

Returns:

Return complex_dtype as native or ivy dtype if provided, else if input is given, return its complex dtype, otherwise return the global default complex dtype.

Examples

>>> ivy.default_complex_dtype()
'complex64'
>>> ivy.set_default_complex_dtype(ivy.ComplexDtype("complex64"))
>>> ivy.default_complex_dtype()
'complex64'
>>> ivy.default_complex_dtype(complex_dtype=ivy.ComplexDtype("complex128"))
'complex128'
>>> ivy.default_complex_dtype(input=4294.967346)
'complex64'
>>> x = ivy.array([9.8,8.9], dtype="complex128")
>>> ivy.default_complex_dtype(input=x)
'complex128'
ivy.default_dtype(*, dtype=None, item=None, as_native=False)[source]#
Parameters:
  • item (Optional[Union[Array, NativeArray]], default: None) – Number or array for inferring the dtype.

  • dtype (Optional[Union[Dtype, str]], default: None) – The dtype to be returned.

  • as_native (bool, default: False) – Whether to return the dtype as native dtype.

Return type:

Union[Dtype, NativeDtype, str]

Returns:

Return dtype as native or ivy dtype if provided, else if item is given, return its dtype, otherwise return the global default dtype.

Examples

>>> ivy.default_dtype()
'float32'
>>> ivy.set_default_dtype(ivy.bool)
>>> ivy.default_dtype()
'bool'
>>> ivy.set_default_dtype(ivy.int16)
>>> ivy.default_dtype()
'int16'
>>> ivy.set_default_dtype(ivy.float64)
>>> ivy.default_dtype()
'float64'
>>> ivy.default_dtype(dtype="int32")
'int32'
>>> ivy.default_dtype(dtype=ivy.float16)
'float16'
>>> ivy.default_dtype(item=53.234)
'float64'
>>> ivy.default_dtype(item=[1, 2, 3])
'int32'
>>> x = ivy.array([5.2, 9.7], dtype="complex128")
>>> ivy.default_dtype(item=x)
'complex128'
ivy.default_float_dtype(*, input=None, float_dtype=None, as_native=False)[source]#
Parameters:
  • input (Optional[Union[Array, NativeArray]], default: None) – Number or array for inferring the float dtype.

  • float_dtype (Optional[Union[FloatDtype, NativeDtype]], default: None) – The float dtype to be returned.

  • as_native (bool, default: False) – Whether to return the float dtype as native dtype.

Return type:

Union[Dtype, str, NativeDtype]

Returns:

Return float_dtype as native or ivy dtype if provided, else if input is given, return its float dtype, otherwise return the global default float dtype.

Examples

>>> ivy.default_float_dtype()
'float32'
>>> ivy.set_default_float_dtype(ivy.FloatDtype("float64"))
>>> ivy.default_float_dtype()
'float64'
>>> ivy.default_float_dtype(float_dtype=ivy.FloatDtype("float16"))
'float16'
>>> ivy.default_float_dtype(input=4294.967346)
'float32'
>>> x = ivy.array([9.8,8.9], dtype="float16")
>>> ivy.default_float_dtype(input=x)
'float16'
ivy.default_int_dtype(*, input=None, int_dtype=None, as_native=False)[source]#
Parameters:
  • input (Optional[Union[Array, NativeArray]], default: None) – Number or array for inferring the int dtype.

  • int_dtype (Optional[Union[IntDtype, NativeDtype]], default: None) – The int dtype to be returned.

  • as_native (bool, default: False) – Whether to return the int dtype as native dtype.

Return type:

Union[IntDtype, NativeDtype]

Returns:

Return int_dtype as native or ivy dtype if provided, else if input is given, return its int dtype, otherwise return the global default int dtype.

Examples

>>> ivy.set_default_int_dtype(ivy.intDtype("int16"))
>>> ivy.default_int_dtype()
'int16'
>>> ivy.default_int_dtype(input=4294967346)
'int64'
>>> ivy.default_int_dtype(int_dtype=ivy.intDtype("int8"))
'int8'
>>> x = ivy.array([9,8], dtype="int32")
>>> ivy.default_int_dtype(input=x)
'int32'
ivy.default_uint_dtype(*, input=None, uint_dtype=None, as_native=False)[source]#
Parameters:
  • input (Optional[Union[Array, NativeArray]], default: None) – Number or array for inferring the uint dtype.

  • uint_dtype (Optional[Union[UintDtype, NativeDtype]], default: None) – The uint dtype to be returned.

  • as_native (bool, default: False) – Whether to return the uint dtype as native dtype.

Return type:

Union[UintDtype, NativeDtype]

Returns:

Return uint_dtype as native or ivy dtype if provided, else if input is given, return its uint dtype, otherwise return the global default uint dtype.

Examples

>>> ivy.set_default_uint_dtype(ivy.UintDtype("uint16"))
>>> ivy.default_uint_dtype()
'uint16'
>>> ivy.default_uint_dtype(input=4294967346)
'uint64'
>>> ivy.default_uint_dtype(uint_dtype=ivy.UintDtype("uint8"))
'uint8'
>>> x = ivy.array([9,8], dtype="uint32")
>>> ivy.default_uint_dtype(input=x)
'uint32'
ivy.dtype(x, *, as_native=False)[source]#

Get the data type for input array x.

Parameters:
  • x (Union[Array, NativeArray]) – Tensor for which to get the data type.

  • as_native (bool, default: False) – Whether or not to return the dtype in string format. Default is False.

Return type:

Union[Dtype, NativeDtype]

Returns:

ret – Data type of the array.

Examples

With ivy.Array inputs:

>>> x1 = ivy.array([1.0, 2.0, 3.5, 4.5, 5, 6])
>>> y = ivy.dtype(x1)
>>> print(y)
float32

With ivy.NativeArray inputs:

>>> x1 = ivy.native_array([1, 0, 1, -1, 0])
>>> y = ivy.dtype(x1)
>>> print(y)
int32

With ivy.Container inputs:

>>> x = ivy.Container(a=ivy.native_array([1.0, 2.0, -1.0, 4.0, 1.0]),
...                   b=ivy.native_array([1, 0, 0, 0, 1]))
>>> y = ivy.dtype(x.a)
>>> print(y)
float32
ivy.dtype_bits(dtype_in, /)[source]#

Get the number of bits used for representing the input data type.

Parameters:

dtype_in (Union[Dtype, NativeDtype, str]) – The data type to determine the number of bits for.

Return type:

int

Returns:

ret – The number of bits used to represent the data type.

Examples

With ivy.Dtype inputs:

>>> x = ivy.dtype_bits(ivy.float32)
>>> print(x)
32
>>> x = ivy.dtype_bits('int64')
>>> print(x)
64

With ivy.NativeDtype inputs:

>>> x = ivy.dtype_bits(ivy.native_bool)
>>> print(x)
1
ivy.finfo(type, /)[source]#

Machine limits for floating-point data types.

Parameters:

type (Union[Dtype, str, Array, NativeArray]) – the kind of floating-point data-type about which to get information.

Return type:

None

Returns:

ret – an object having the following attributes:

  • bits: int

number of bits occupied by the floating-point data type.

  • eps: float

difference between 1.0 and the next smallest representable floating-point number larger than 1.0 according to the IEEE-754 standard.

  • max: float

largest representable number.

  • min: float

smallest representable number.

  • smallest_normal: float

smallest positive floating-point number with full precision.

This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.

Examples

With ivy.Dtype input:

>>> y = ivy.finfo(ivy.float32)
>>> print(y)
finfo(resolution=1e-06, min=-3.4028235e+38, max=3.4028235e+38, dtype=float32)

With str input:

>>> y = ivy.finfo('float32')
>>> print(y)
finfo(resolution=1e-06, min=-3.4028235e+38, max=3.4028235e+38, dtype=float32)

With ivy.Array input:

>>> x = ivy.array([1.3,2.1,3.4], dtype=ivy.float64)
>>> print(ivy.finfo(x))
finfo(resolution=1e-15, min=-1.7976931348623157e+308,     max=1.7976931348623157e+308, dtype=float64)
>>> x = ivy.array([0.7,8.4,3.14], dtype=ivy.float16)
>>> print(ivy.finfo(x))
finfo(resolution=0.001, min=-6.55040e+04, max=6.55040e+04, dtype=float16)

With ivy.Container input:

>>> c = ivy.Container(x=ivy.array([-9.5,1.8,-8.9], dtype=ivy.float16),
...                   y=ivy.array([7.6,8.1,1.6], dtype=ivy.float64))
>>> print(ivy.finfo(c))
{
    x: finfo(resolution=0.001, min=-6.55040e+04, max=6.55040e+04, dtype=float16),
    y: finfo(resolution=1e-15, min=-1.7976931348623157e+308,             max=1.7976931348623157e+308, dtype=float64)
}
ivy.function_supported_dtypes(fn, recurse=True)[source]#

Return the supported data types of the current backend’s function. The function returns a dict containing the supported dtypes for the compositional and primary implementations in case of partial mixed functions.

Parameters:
  • fn (Callable) – The function to check for the supported dtype attribute

  • recurse (bool, default: True) – Whether to recurse into used ivy functions. Default is True.

Return type:

Union[Tuple, dict]

Returns:

ret – Tuple or dict containing the supported dtypes of the function

Examples

>>> print(ivy.function_supported_dtypes(ivy.acosh))
('bool', 'float64', 'int64', 'uint8', 'int8', 'float32', 'int32', 'int16',     'bfloat16')
ivy.function_unsupported_dtypes(fn, recurse=True)[source]#

Return the unsupported data types of the current backend’s function. The function returns a dict containing the unsupported dtypes for the compositional and primary implementations in case of partial mixed functions.

Parameters:
  • fn (Callable) – The function to check for the unsupported dtype attribute

  • recurse (bool, default: True) – Whether to recurse into used ivy functions. Default is True.

Return type:

Union[Tuple, dict]

Returns:

ret – Tuple or dict containing the unsupported dtypes of the function

Examples

>>> ivy.set_backend('torch')
>>> print(ivy.function_unsupported_dtypes(ivy.acosh))
('float16','uint16','uint32','uint64')
ivy.iinfo(type, /)[source]#

Machine limits for integer data types.

Parameters:

type (Union[Dtype, str, Array, NativeArray]) – the kind of integer data-type about which to get information.

Return type:

None

Returns:

ret – a class with that encapsules the following attributes:

  • bits: int

number of bits occupied by the type.

  • max: int

largest representable number.

  • min: int

smallest representable number.

This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.

Examples

With ivy.Dtype input:

>>> ivy.iinfo(ivy.int32)
iinfo(min=-2147483648, max=2147483647, dtype=int32)

With str input:

>>> ivy.iinfo('int32')
iinfo(min=-2147483648, max=2147483647, dtype=int32)

With ivy.Array input:

>>> x = ivy.array([13,21,34], dtype=ivy.int8)
>>> ivy.iinfo(x)
iinfo(min=-128, max=127, dtype=int8)

With ivy.NativeArray input:

>>> x = ivy.native_array([7,84,314], dtype=ivy.int64)
>>> ivy.iinfo(x)
iinfo(min=-9223372036854775808, max=9223372036854775807, dtype=int64)

With ivy.Container input:

>>> c = ivy.Container(x=ivy.array([0,1800,89], dtype=ivy.uint16),
...                   y=ivy.array([76,81,16], dtype=ivy.uint32))
>>> ivy.iinfo(c)
{
    x: iinfo(min=0, max=65535, dtype=uint16),
    y: iinfo(min=0, max=4294967295, dtype=uint32)
}
ivy.infer_default_dtype(dtype, as_native=False)[source]#

Summary.

Parameters:
  • dtype (Union[Dtype, NativeDtype, str]) –

  • as_native (bool, default: False) – (Default value = False)

Return type:

Union[Dtype, NativeDtype]

Returns:

Return the default data type for the “kind” (integer or floating-point) of dtype

Examples

>>> ivy.set_default_int_dtype("int32")
>>> ivy.infer_default_dtype("int8")
'int8'
>>> ivy.set_default_float_dtype("float64")
>>> ivy.infer_default_dtype("float32")
'float64'
>>> ivy.set_default_uint_dtype("uint32")
>>> x = ivy.array([0], dtype="uint64")
>>> ivy.infer_default_dtype(x.dtype)
'uint32'
ivy.invalid_dtype(dtype_in, /)[source]#

Determine whether the provided data type is not support by the current framework.

Parameters:

dtype_in (Optional[Union[Dtype, NativeDtype, str]]) – The data type for which to check for backend non-support

Return type:

bool

Returns:

ret – Boolean, whether the data-type string is un-supported.

Examples

>>> print(ivy.invalid_dtype(None))
False
>>> print(ivy.invalid_dtype("uint64"))
False
>>> print(ivy.invalid_dtype(ivy.float64))
False
>>> print(ivy.invalid_dtype(ivy.native_uint8))
False
ivy.is_bool_dtype(dtype_in, /)[source]#

Determine whether the input data type is a bool data type.

Parameters:

dtype_in (Union[Dtype, str, Array, NativeArray, Number]) – input data type to test.

Return type:

bool

Returns:

  • ret – “True” if the input data type is a bool, otherwise “False”.

  • Both the description and the type hints above assumes an array input for

  • simplicity but this function is *nestable, and therefore also accepts*

  • ivy.Container instances in place of any of the arguments.

ivy.is_complex_dtype(dtype_in, /)[source]#

Determine whether the input data type is a complex dtype.

Parameters:

dtype_in (Union[Dtype, str, Array, NativeArray, Number]) – The array or data type to check

Return type:

bool

Returns:

ret – Whether or not the array or data type is of a complex dtype

Examples

>>> ivy.is_complex_dtype(ivy.ComplexDtype("complex64"))
True
>>> ivy.is_complex_dtype(ivy.Dtype("complex128"))
True
>>> ivy.is_complex_dtype(ivy.IntDtype("int64"))
False
ivy.is_float_dtype(dtype_in, /)[source]#

Determine whether the input data type is a float dtype.

Parameters:

dtype_in (Union[Dtype, str, Array, NativeArray, Number]) – The array or data type to check

Return type:

bool

Returns:

ret – Whether or not the array or data type is of a floating point dtype

Examples

>>> x = ivy.is_float_dtype(ivy.float32)
>>> print(x)
True
>>> arr = ivy.array([1.2, 3.2, 4.3], dtype=ivy.float32)
>>> print(ivy.is_float_dtype(arr))
True
ivy.is_hashable_dtype(dtype_in, /)[source]#

Check if the given data type is hashable or not.

Parameters:

dtype_in (Union[Dtype, NativeDtype]) – The data type to check.

Return type:

bool

Returns:

ret – True if data type is hashable else False

ivy.is_int_dtype(dtype_in, /)[source]#

Determine whether the input data type is an int data type.

Parameters:

dtype_in (Union[Dtype, str, Array, NativeArray, Number]) – input data type to test.

Return type:

bool

Returns:

  • ret – “True” if the input data type is an integer, otherwise “False”.

  • Both the description and the type hints above assumes an array input for

  • simplicity but this function is *nestable, and therefore also accepts*

  • ivy.Container instances in place of any of the arguments.

Examples

With ivy.Dtype input:

>>> x = ivy.is_int_dtype(ivy.float64)
>>> print(x)
False

With ivy.Array input:

>>> x = ivy.array([1., 2., 3.])
>>> print(ivy.is_int_dtype(x), x.dtype)
False float32

With ivy.NativeArray input:

>>> x = ivy.native_array([[-1, -1, -1], [1, 1, 1]], dtype=ivy.int16)
>>> print(ivy.is_int_dtype(x))
True

With Number input:

>>> x = 1
>>> print(ivy.is_int_dtype(x))
True

With ivy.Container input:

>>> x = ivy.Container(a=ivy.array([0., 1., 2.]),b=ivy.array([3, 4, 5]))
>>> print(ivy.is_int_dtype(x))
{
    a: False,
    b: True
}
ivy.is_native_dtype(dtype_in, /)[source]#

Determine whether the input dtype is a Native dtype.

Parameters:

dtype_in (Union[Dtype, NativeDtype]) – Determine whether the input data type is a native data type object.

Return type:

bool

Returns:

ret – Boolean, whether or not dtype_in is a native data type.

Examples

>>> ivy.set_backend('numpy')
>>> ivy.is_native_dtype(np.int32)
True
>>> ivy.set_backend('numpy')
>>> ivy.is_native_array(ivy.float64)
False
ivy.is_uint_dtype(dtype_in, /)[source]#

Determine whether the input data type is a uint dtype.

Parameters:

dtype_in (Union[Dtype, str, Array, NativeArray, Number]) – The array or data type to check

Return type:

bool

Returns:

ret – Whether or not the array or data type is of a uint dtype

Examples

>>> ivy.is_uint_dtype(ivy.UintDtype("uint16"))
True
>>> ivy.is_uint_dtype(ivy.Dtype("uint8"))
True
>>> ivy.is_uint_dtype(ivy.IntDtype("int64"))
False
ivy.promote_types(type1, type2, /, *, array_api_promotion=False)[source]#

Promote the datatypes type1 and type2, returning the data type they promote to.

Parameters:
  • type1 (Union[Dtype, NativeDtype]) – the first of the two types to promote

  • type2 (Union[Dtype, NativeDtype]) – the second of the two types to promote

  • array_api_promotion (bool, default: False) – whether to only use the array api promotion rules

Return type:

Dtype

Returns:

ret – The type that both input types promote to

ivy.promote_types_of_inputs(x1, x2, /, *, array_api_promotion=False)[source]#

Promote the dtype of the given native array inputs to a common dtype based on type promotion rules.

While passing float or integer values or any other non-array input to this function, it should be noted that the return will be an array-like object. Therefore, outputs from this function should be used as inputs only for those functions that expect an array-like or tensor-like objects, otherwise it might give unexpected results.

Return type:

Tuple[NativeArray, NativeArray]

ivy.result_type(*arrays_and_dtypes)[source]#

Return the dtype that results from applying the type promotion rules (see type-promotion) to the arguments.

If provided mixed dtypes (e.g., integer and floating-point), the returned dtype will be implementation-specific.

Parameters:

arrays_and_dtypes (Union[Array, NativeArray, Dtype]) – an arbitrary number of input arrays and/or dtypes.

Return type:

Dtype

Returns:

ret – the dtype resulting from an operation involving the input arrays and dtypes.

This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.

Examples

With ivy.Array input:

>>> x = ivy.array([3, 4, 5])
>>> y = ivy.array([3., 4., 5.])
>>> d = ivy.result_type(x, y)
>>> print(d)
float32

With ivy.Dtype input:

>>> d = ivy.result_type(ivy.uint8, ivy.uint64)
>>> print(d)
uint64

With ivy.Container input:

>>> x = ivy.Container(a = ivy.array([3, 4, 5]))
>>> d = x.a.dtype
>>> print(d)
int32
>>> x = ivy.Container(a = ivy.array([3, 4, 5]))
>>> d = ivy.result_type(x, ivy.float64)
>>> print(d)
{
    a: float64
}
ivy.set_default_complex_dtype(complex_dtype, /)[source]#

Set the ‘complex_dtype’ as the default data type.

Parameters:

complex_dtype (Union[Dtype, str]) – The complex data type to be set as the default.

Examples

With :class: ivy.Dtype input:

>>> ivy.set_default_complex_dtype(ivy.ComplexDtype("complex64"))
>>> ivy.default_complex_dtype()
'complex64'
>>> ivy.set_default_float_dtype(ivy.ComplexDtype("complex128"))
>>> ivy.default_complex_dtype()
'complex128'
ivy.set_default_dtype(dtype, /)[source]#

Set the datatype dtype as default data type.

Parameters:

dtype (Union[Dtype, NativeDtype, str]) – the data_type to set as default data type

Examples

With ivy.Dtype input:

>>> ivy.set_default_dtype(ivy.bool)
>>> ivy.default_dtype_stack
['bool']
>>> ivy.unset_default_dtype()
>>> ivy.set_default_dtype("float64")
>>> ivy.default_dtype_stack
['float64']
>>> ivy.unset_default_dtype()

With ivy.NativeDtype input:

>>> ivy.set_default_dtype(ivy.native_uint64)
>>> ivy.default_dtype_stack
['uint64']
ivy.set_default_float_dtype(float_dtype, /)[source]#

Set the ‘float_dtype’ as the default data type.

Parameters:

float_dtype (Union[Dtype, str]) – The float data type to be set as the default.

Examples

With :class: ivy.Dtype input:

>>> ivy.set_default_float_dtype(ivy.floatDtype("float64"))
>>> ivy.default_float_dtype()
'float64'
>>> ivy.set_default_float_dtype(ivy.floatDtype("float32"))
>>> ivy.default_float_dtype()
'float32'
ivy.set_default_int_dtype(int_dtype, /)[source]#

Set the ‘int_dtype’ as the default data type.

Parameters:

int_dtype (Union[Dtype, str]) – The integer data type to be set as the default.

Examples

With :class: ivy.Dtype input:

>>> ivy.set_default_int_dtype(ivy.intDtype("int64"))
>>> ivy.default_int_dtype()
'int64'
>>> ivy.set_default_int_dtype(ivy.intDtype("int32"))
>>> ivy.default_int_dtype()
'int32'
ivy.set_default_uint_dtype(uint_dtype, /)[source]#

Set the uint dtype to be default.

Parameters:

uint_dtype (Union[Dtype, str]) – The uint dtype to be set as default.

Examples

>>> ivy.set_default_uint_dtype(ivy.UintDtype("uint8"))
>>> ivy.default_uint_dtype()
'uint8'
>>> ivy.set_default_uint_dtype(ivy.UintDtype("uint64"))
>>> ivy.default_uint_dtype()
'uint64'
ivy.type_promote_arrays(x1, x2, /)[source]#

Type promote the input arrays, returning new arrays with the shared correct data type.

Parameters:
  • x1 (Union[Array, NativeArray]) – the first of the two arrays to type promote

  • x2 (Union[Array, NativeArray]) – the second of the two arrays to type promote

Return type:

Tuple

Returns:

ret1, ret2 – The input arrays after type promotion

ivy.unset_default_complex_dtype()[source]#

Reset the current default complex dtype to the previous state.

Examples

>>> ivy.set_default_complex_dtype(ivy.complex64)
>>> ivy.set_default_complex_dtype(ivy.complex128)
>>> ivy.default_complex_dtype_stack
['complex64','complex128']
>>> ivy.unset_default_complex_dtype()
>>> ivy.default_complex_dtype_stack
['complex64']
ivy.unset_default_dtype()[source]#

Reset the current default dtype to the previous state.

Examples

>>> ivy.set_default_dtype(ivy.int32)
>>> ivy.set_default_dtype(ivy.bool)
>>> ivy.default_dtype_stack
['int32', 'bool']
>>> ivy.unset_default_dtype()
>>> ivy.default_dtype_stack
['int32']
>>> ivy.unset_default_dtype()
>>> ivy.default_dtype_stack
[]
ivy.unset_default_float_dtype()[source]#

Reset the current default float dtype to the previous state.

Examples

>>> ivy.set_default_float_dtype(ivy.float32)
>>> ivy.set_default_float_dtype(ivy.float64)
>>> ivy.default_float_dtype_stack
['float32','float64']
>>> ivy.unset_default_float_dtype()
>>> ivy.default_float_dtype_stack
['float32']
ivy.unset_default_int_dtype()[source]#

Reset the current default int dtype to the previous state.

Examples

>>> ivy.set_default_int_dtype(ivy.intDtype("int16"))
>>> ivy.default_int_dtype()
'int16'
>>> ivy.unset_default_int_dtype()
>>> ivy.default_int_dtype()
'int32'
ivy.unset_default_uint_dtype()[source]#

Reset the current default uint dtype to the previous state.

Examples

>>> ivy.set_default_uint_dtype(ivy.UintDtype("uint8"))
>>> ivy.default_uint_dtype()
'uint8'
>>> ivy.unset_default_uint_dtype()
>>> ivy.default_uint_dtype()
'uint32'
ivy.valid_dtype(dtype_in, /)[source]#

Determine whether the provided data type is supported by the current framework.

Parameters:

dtype_in (Optional[Union[Dtype, NativeDtype, str]]) – The data type for which to check for backend support

Return type:

bool

Returns:

ret – Boolean, whether or not the data-type string is supported.

Examples

>>> print(ivy.valid_dtype(None))
True
>>> print(ivy.valid_dtype(ivy.float64))
True
>>> print(ivy.valid_dtype('bool'))
True
>>> print(ivy.valid_dtype(ivy.native_float16))
True
class ivy.DefaultComplexDtype(complex_dtype)[source]#

Ivy’s DefaultComplexDtype class.

class ivy.DefaultDtype(dtype)[source]#

Ivy’s DefaultDtype class.

class ivy.DefaultFloatDtype(float_dtype)[source]#

Ivy’s DefaultFloatDtype class.

class ivy.DefaultIntDtype(int_dtype)[source]#

Ivy’s DefaultIntDtype class.

class ivy.DefaultUintDtype(uint_dtype)[source]#

Ivy’s DefaultUintDtype class.

This should have hopefully given you an overview of the data_type submodule, if you have any questions, please feel free to reach out on our discord!