jac#
- ivy.jac(func)[source]#
Call function func, and return func’s Jacobian partial derivatives.
- Parameters:
func (
Callable
) – Function for which we compute the gradients of the output with respect to xs input.- Return type:
Callable
- Returns:
ret – the Jacobian function
Examples
With
ivy.Array
input:>>> x = ivy.array([[4.6, 2.1, 5], [2.8, 1.3, 6.2]]) >>> func = lambda x: ivy.mean(ivy.square(x)) >>> jac_fn = ivy.jac(func) >>> jacobian = jac_fn(x) >>> print(jacobian) ivy.array([[1.53 , 0.7 , 1.67 ], ... [0.933, 0.433, 2.07 ]])