log#
- ivy.log(x, /, *, out=None)[source]#
Calculate an implementation-dependent approximation to the natural (base
e
) logarithm, having domain[0, +infinity]
and codomain[-infinity, +infinity]
, for each elementx_i
of the input arrayx
.Special cases
For floating-point operands,
If
x_i
isNaN
, the result isNaN
.If
x_i
is less than0
, the result isNaN
.If
x_i
is either+0
or-0
, the result is-infinity
.If
x_i
is1
, the result is+0
.If
x_i
is+infinity
, the result is+infinity
.
For complex floating-point operands, let
a = real(x_i)
,b = imag(x_i)
, andIf
a
is-0
andb
is+0
, the result is-infinity + πj
.If
a
is+0
andb
is+0
, the result is-infinity + 0j
.If
a
is a finite number andb
is+infinity
, the result is+infinity + πj/2
.If
a
is a finite number andb
isNaN
, the result isNaN + NaN j
.If
a
is-infinity
andb
is a positive (i.e., greater than0
) finite number, the result is+infinity + πj
.If
a
is+infinity
andb
is a positive (i.e., greater than0
) finite number, the result is+infinity + 0j
.If
a
is-infinity
andb
is+infinity
, the result is+infinity + 3πj/4
.If
a
is+infinity
andb
is+infinity
, the result is+infinity + πj/4
.If
a
is either+infinity
or-infinity
andb
isNaN
, the result is+infinity + NaN j
.If
a
isNaN
andb
is a finite number, the result isNaN + NaN j
.If
a
isNaN
andb
is+infinity
, the result is+infinity + NaN j
.If
a
isNaN
andb
isNaN
, the result isNaN + NaN j
.
- Parameters:
- Return type:
- Returns:
ret – an array containing the evaluated natural logarithm for each element in
x
. The returned array must have a floating-point data type determined by type-promotion.
Examples
With
ivy.Array
input:>>> x = ivy.array([4.0, 1, -0.0, -5.0]) >>> y = ivy.log(x) >>> print(y) ivy.array([1.39, 0., -inf, nan])
>>> x = ivy.array([[float('nan'), 1, 5.0, float('+inf')], ... [+0, -1.0, -5, float('-inf')]]) >>> y = ivy.log(x) >>> print(y) ivy.array([[nan, 0., 1.61, inf], [-inf, nan, nan, nan]])
With
ivy.Container
input:>>> x = ivy.Container(a=ivy.array([0.0, float('nan')]), ... b=ivy.array([-0., -3.9, float('+inf')]), ... c=ivy.array([7.9, 1.1, 1.])) >>> y = ivy.log(x) >>> print(y) { a: ivy.array([-inf, nan]), b: ivy.array([-inf, nan, inf]), c: ivy.array([2.07, 0.0953, 0.]) }
- Array.log(self, *, out=None)[source]#
ivy.Array instance method variant of ivy.log. This method simply wraps the function, and so the docstring for ivy.log also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array. Should have a real-valued floating-point data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the evaluated result for each element in
self
. The returned array must have a real-valued floating-point data type determined by type-promotion.
Examples
Using
ivy.Array
instance method:>>> x = ivy.array([4.0, 1, -0.0, -5.0]) >>> y = x.log() >>> print(y) ivy.array([1.39, 0., -inf, nan])
>>> x = ivy.array([float('nan'), -5.0, -0.0, 1.0, 5.0, float('+inf')]) >>> y = x.log() >>> print(y) ivy.array([nan, nan, -inf, 0., 1.61, inf])
>>> x = ivy.array([[float('nan'), 1, 5.0, float('+inf')], ... [+0, -1.0, -5, float('-inf')]]) >>> y = x.log() >>> print(y) ivy.array([[nan, 0., 1.61, inf], [-inf, nan, nan, nan]])
- Container.log(self, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#
ivy.Container instance method variant of ivy.log. This method simply wraps the function, and so the docstring for ivy.log also applies to this method with minimal changes.
- Parameters:
self (
Container
) – input container. Should have a real-valued floating-point data type.key_chains (
Optional
[Union
[List
[str
],Dict
[str
,str
],Container
]], default:None
) – The key-chains to apply or not apply the method to. Default isNone
.to_apply (
Union
[bool
,Container
], default:True
) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default isTrue
.prune_unapplied (
Union
[bool
,Container
], default:False
) – Whether to prune key_chains for which the function was not applied. Default isFalse
.map_sequences (
Union
[bool
,Container
], default:False
) – Whether to also map method to sequences (lists, tuples). Default isFalse
.out (
Optional
[Container
], default:None
) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container
- Returns:
ret – a container containing the log for each element in
self
. The returned array must have a real-valued floating-point data type determined by type-promotion.
Examples
Using
ivy.Container
instance method:>>> x = ivy.Container(a=ivy.array([0.0, float('nan')]), ... b=ivy.array([-0., -3.9, float('+inf')]), ... c=ivy.array([7.9, 1.1, 1.])) >>> y = x.log() >>> print(y) { a: ivy.array([-inf, nan]), b: ivy.array([-inf, nan, inf]), c: ivy.array([2.07, 0.0953, 0.]) }