idct#
- ivy.idct(x, /, *, type=2, n=None, axis=-1, norm=None, out=None)[source]#
Compute the 1D Inverse Discrete Cosine Transformation of a given signal.
- Parameters:
x (
Union
[Array
,NativeArray
]) – The input signal.type (
Literal
[1
,2
,3
,4
], default:2
) – The type of the idct. Must be 1, 2, 3 or 4.n (
Optional
[int
], default:None
) – The length of the transform. If n is less than the input signal length, then x is truncated, if n is larger then x is zero-padded.axis (
int
, default:-1
) – The axis to compute the IDCT along.norm (
Optional
[Literal
['ortho'
]], default:None
) – The type of normalization to be applied. Must be either None or “ortho”.out (
Optional
[Union
[Array
,NativeArray
]], default:None
) – optional output array, for writing the result to.
- Return type:
Union
[Array
,NativeArray
]- Returns:
ret – Array containing the transformed input.
Both the description and the type hints above assumes an array input for simplicity,
but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.
Examples
With
ivy.Array
input:>>> x = ivy.array([8, 16, 24, 32, 40, 48, 56, 64]) >>> y = ivy.idct(x, type=2, n=None, norm='ortho') >>> print(y) ivy.array([ 79.49862671, -70.37691498, 30.00390816, -23.58938599, 13.92713165, -10.078475 , 5.19664812, -1.95411837])
>>> x = ivy.array([[[8, 16, 24, 32], [40, 48, 56, 64]], ... [[1, 2, 3, 4], [ 5, 6, 7, 8]]]) >>> y = ivy.idct(x, type=1, n=None, axis=0, norm=None) >>> print(y) ivy.array([[[ 9., 18., 27., 36.], [45., 54., 63., 72.]],
- [[ 7., 14., 21., 28.],
[35., 42., 49., 56.]]])
>>> x = ivy.array([[ 8.1, 16.2, 24.3, 32.4], ... [40.5, 48.6, 56.7, 64.8]]) >>> y = ivy.zeros((2, 4), dtype=ivy.float32) >>> ivy.idct(x, type=1, n=None, norm=None, out=y) >>> print(y) ivy.array([[ 1.21500000e+02, -3.24000015e+01, 1.90734863e-06, -8.10000420e+00], [ 3.15899994e+02, -3.24000053e+01, 3.81469727e-06, -8.09999847e+00]])
>>> x = ivy.array([8., 16., 24., 32., 40., 48., 56., 64.]) >>> ivy.idct(x, type=4, n=None, norm=None, out=x) >>> print(x) ivy.array([279.4135742, -279.6779785, 128.3770599, -114.8719864, 83.72109985, -79.52869415, 69.79182434, -68.72489166])
With one
ivy.Container
input:>>> x = ivy.Container(a=ivy.array([8, 16, 24, 32, 40, 48, 56, 64]), ... b=ivy.array([1, 2, 3, 4, 5, 6, 7, 8])) >>> y = ivy.idct(x, type=3, n=None, norm='ortho') >>> print(y) { a: ivy.array([1.01823380e+02, -5.15385818e+01, 1.36371466e-06, -5.38763905e+00, 0.00000000e+00, -1.60722279e+00, -8.80319249e-08, -4.05617893e-01]), b: ivy.array([1.27279224e+01, -6.44232273e+00, 1.70464332e-07, -6.73454881e-01, 0.00000000e+00, -2.00902849e-01, -1.10039906e-08, -5.07022366e-02]) }
With multiple
ivy.Container
inputs:>>> x = ivy.Container(a=ivy.array([8, 16, 24, 32, 40, 48, 56, 64]), ... b=ivy.array([1, 2, 3, 4, 5, 6, 7, 8])) >>> container_n = ivy.Container(a=9, b=4) >>> container_type = ivy.Container(a=2, b=1) >>> container_norm = ivy.Container(a="ortho", b=None) >>> y = ivy.idct(x, type=container_type, n=container_n, norm=container_norm) >>> print(y) { a: ivy.array([86.29723358, -66.69506073, 9.93914604, 2.88008881, -16.18951607, 18.06697273, -17.57439613, 11.68861485, -4.41308832]), b: ivy.array([1.50000000e+01, -4.00000000e+00, -2.22044605e-16, -1.00000000e+00]) }
- Array.idct(self, /, *, type=2, n=None, axis=-1, norm=None, out=None)[source]#
ivy.Array instance method variant of ivy.idct. This method simply wraps the function, and so the docstring for ivy.idct also applies to this method with minimal changes.
- Parameters:
self (
Array
) – The input signal.type (
Literal
[1
,2
,3
,4
], default:2
) – The type of the idct. Must be 1, 2, 3 or 4.n (
Optional
[int
], default:None
) – The length of the transform. If n is less than the input signal length, then x is truncated, if n is larger than x is zero-padded.norm (
Optional
[Literal
['ortho'
]], default:None
) – The type of normalization to be applied. Must be either None or “ortho”.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to.
- Return type:
Array
- Returns:
ret – Array containing the transformed input.
Examples
>>> x = ivy.array([8., 16., 24., 32., 40., 48., 56., 64.]) >>> x.idct(type=2, norm="ortho") ivy.array([ 79.49862671, -70.37691498, 30.00390816, -23.58938599, 13.92713165, -10.078475 , 5.19664812, -1.95411837])
- Container.idct(self, /, *, type=2, n=None, axis=-1, norm=None, out=None)[source]#
ivy.Container instance method variant of ivy.idct. This method simply wraps the function, and so the docstring for ivy.idct also applies to this method with minimal changes.
- Parameters:
self (
Container
) – Container with the input signals.type (
Union
[Literal
[1
,2
,3
,4
],Container
], default:2
) – The type of the idct. Must be 1, 2, 3 or 4.n (
Optional
[Union
[int
,Container
]], default:None
) – The length of the transform. If n is less than the input signal length, then x is truncated, if n is larger then x is zero-padded.norm (
Optional
[Union
[Literal
['ortho'
],Container
]], default:None
) – The type of normalization to be applied. Must be either None or “ortho”.out (
Optional
[Container
], default:None
) – optional output container, for writing the result to.
- Return type:
Container
- Returns:
ret – The transformed input.
Examples
>>> x = ivy.Container(a=ivy.array([8, 16, 24, 32, 40, 48, 56, 64]), ... b=ivy.array([1, 2, 3, 4, 5, 6, 7, 8])) >>> x.idct(type=2, norm='ortho') { a: ivy.array([79.49862671, -70.37691498, 30.00390816, -23.58938599, 13.92713165, -10.078475, 5.19664812, -1.95411837]), b: ivy.array([9.94, -8.79711437, 3.76, -2.94867325, 1.74089146, -1.25980937, 0.64958102, -0.2442648]) }