unique_all#
- ivy.unique_all(x, /, *, axis=None, by_value=True)[source]#
Return the unique elements of an input array
x
, the first occurring indices for each unique element inx
, the indices from the set of unique elements that reconstructx
, and the corresponding counts for each unique element inx
.Data-dependent output shape
The shapes of two of the output arrays for this function depend on the data values in the input array; hence, array libraries which build computation graphs (e.g., JAX, Dask, etc.) may find this function difficult to implement without knowing array values. Accordingly, such libraries may choose to omit this function. See data-dependent-output-shapes section for more details.
Note
Uniqueness should be determined based on value equality (i.e.,
x_i == x_j
). For input arrays having floating-point data types, value-based equality implies the following behavior.As
nan
values compare asFalse
,nan
values should be considered distinct.As
-0
and+0
compare asTrue
, signed zeros should not be considered distinct, and the corresponding unique element will be implementation-dependent (e.g., an implementation could choose to return-0
if-0
occurs before+0
).
As signed zeros are not distinct, using
inverse_indices
to reconstruct the input array is not guaranteed to return an array having the exact same values.Each
nan
value should have a count of one, while the counts for signed zeros should be aggregated as a single count.- Parameters:
x (
Union
[Array
,NativeArray
]) – input array.axis (
Optional
[int
], default:None
) – the axis to apply unique on. If None, the unique elements of the flattenedx
are returned.by_value (
bool
, default:True
) – If False, the unique elements will be sorted in the same order that they occur in ‘’x’’. Otherwise, they will be sorted by value.
- Return type:
Tuple
[Union
[Array
,NativeArray
],Union
[Array
,NativeArray
],Union
[Array
,NativeArray
],Union
[Array
,NativeArray
]]- Returns:
ret – a namedtuple
(values, indices, inverse_indices, counts)
whose - first element must have the field namevalues
and must be an arraycontaining the unique elements of
x
. The array must have the same data type asx
.second element must have the field name
indices
and must be an array containing the indices (first occurrences) ofx
that result invalues
. The array must have the same length asvalues
and must have the default array index data type.third element must have the field name
inverse_indices
and must be an array containing the indices ofvalues
that reconstructx
. The array must have the same length as theaxis
dimension ofx
and must have the default array index data type.fourth element must have the field name
counts
and must be an array containing the number of times each unique element occurs inx
. The returned array must have the same length asvalues
and must have the default array index data type.
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.Examples
With
ivy.Array
input:>>> x = ivy.randint(0, 10, shape=(2, 2), seed=0) >>> z = ivy.unique_all(x) >>> print(z) Results(values=ivy.array([1, 2, 5, 9]), indices=ivy.array([3, 2, 1, 0]), inverse_indices=ivy.array([[3, 2], [1, 0]]), counts=ivy.array([1, 1, 1, 1]))
>>> x = ivy.array([[ 2.1141, 0.8101, 0.9298, 0.8460], ... [-1.2119, -0.3519, -0.6252, 0.4033], ... [ 0.7443, 0.2577, -0.3707, -0.0545], ... [-0.3238, 0.5944, 0.0775, -0.4327]]) >>> x[range(4), range(4)] = ivy.nan #Introduce NaN values >>> z = ivy.unique_all(x) >>> print(z) Results(values=ivy.array([-1.2119 , -0.62519997, -0.3238 , -0.0545 , 0.0775 , 0.2577 , 0.40329999, 0.59439999, 0.74430001, 0.81010002, 0.84600002, 0.92979997, nan, nan, nan, nan]), indices=ivy.array([ 4, 6, 12, 11, 14, 9, 7, 13, 8, 1, 3, 2, 0, 5, 10, 15]), inverse_indices=ivy.array([[12, 9, 11, 10], [ 0, 12, 1, 6], [ 8, 5, 12, 3], [ 2, 7, 4, 12]]), counts=ivy.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]))
- Array.unique_all(self, /, *, axis=None, by_value=True)[source]#
ivy.Array instance method variant of ivy.unique_all. This method simply wraps the function, and so the docstring for ivy.unique_all also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array.axis (
Optional
[int
], default:None
) – the axis to apply unique on. If None, the unique elements of the flattenedx
are returned.by_value (
bool
, default:True
) – If False, the unique elements will be sorted in the same order that they occur in ‘’x’’. Otherwise, they will be sorted by value.
- Return type:
Tuple
[Array
,Array
,Array
,Array
]- Returns:
ret – a namedtuple
(values, indices, inverse_indices, counts)
. The details can be found in the docstring for ivy.unique_all.
Examples
>>> x = ivy.randint(0, 10, shape=(2, 2), seed=0) >>> z = x.unique_all() >>> print(z) Results(values=ivy.array([1, 2, 5, 9]), indices=ivy.array([3, 2, 1, 0]), inverse_indices=ivy.array([[3, 2], [1, 0]]), counts=ivy.array([1, 1, 1, 1]))
- Container.unique_all(self, /, *, axis=None, by_value=True, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#
ivy.Container instance method variant of ivy.unique_all. This method simply wraps the function, and so the docstring for ivy.unique_all also applies to this method with minimal changes.
- Parameters:
self (
Container
) – input container.axis (
Optional
[Union
[int
,Container
]], default:None
) – the axis to apply unique on. If None, the unique elements of the flattenedx
are returned.by_value (
Union
[bool
,Container
], default:True
) – If False, the unique elements will be sorted in the same order that they occur in ‘’x’’. Otherwise, they will be sorted by value.key_chains (
Optional
[Union
[List
[str
],Dict
[str
,str
],Container
]], default:None
) – The key-chains to apply or not apply the method to. Default isNone
.to_apply (
Union
[bool
,Container
], default:True
) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default isTrue
.prune_unapplied (
Union
[bool
,Container
], default:False
) – Whether to prune key_chains for which the function was not applied. Default isFalse
.map_sequences (
Union
[bool
,Container
], default:False
) – Whether to also map method to sequences (lists, tuples). Default isFalse
.
- Return type:
Container
- Returns:
ret – A container of namedtuples
(values, indices, inverse_indices, counts)
. The details of each entry can be found in the docstring for ivy.unique_all.
Examples
>>> x = ivy.Container(a=ivy.array([0., 1., 3. , 2. , 1. , 0.]), ... b=ivy.array([1,2,1,3,4,1,3])) >>> y = x.unique_all() >>> print(y) [{ a: ivy.array([0., 1., 2., 3.]), b: ivy.array([1, 2, 3, 4]) }, { a: ivy.array([0, 1, 3, 2]), b: ivy.array([0, 1, 3, 4]) }, { a: ivy.array([0, 1, 3, 2, 1, 0]), b: ivy.array([0, 1, 0, 2, 3, 0, 2]) }, { a: ivy.array([2, 2, 1, 1]), b: ivy.array([3, 1, 2, 1]) }]