logical_not#
- ivy.logical_not(x, /, *, out=None)[source]#
Compute the logical NOT for each element
x_i
of the input arrayx
.Note
While this specification recommends that this function only accept input arrays having a boolean data type, specification-compliant array libraries may choose to accept input arrays having numeric data types. If non-boolean data types are supported, zeros must be considered the equivalent of
False
, while non-zeros must be considered the equivalent ofTrue
.Special cases
For this particular case,
If
x_i
isNaN
, the result isFalse
.If
x_i
is-0
, the result isTrue
.If
x_i
is-infinity
, the result isFalse
.If
x_i
is+infinity
, the result isFalse
.
- Parameters:
- Return type:
- Returns:
ret – an array containing the element-wise results. The returned array must have a data type of
bool
.
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the argumentsExamples
With
ivy.Array
input:>>> x=ivy.array([1,0,1,1,0]) >>> y=ivy.logical_not(x) >>> print(y) ivy.array([False, True, False, False, True])
>>> x=ivy.array([2,0,3,5]) >>> y=ivy.logical_not(x) >>> print(y) ivy.array([False, True, False, False])
>>> x=ivy.native_array([1,0,6,5]) >>> y=ivy.logical_not(x) >>> print(y) ivy.array([False, True, False, False])
With
ivy.Container
input:>>> x=ivy.Container(a=ivy.array([1,0,1,1]), b=ivy.array([1,0,8,9])) >>> y=ivy.logical_not(x) >>> print(y) { a: ivy.array([False, True, False, False]), b: ivy.array([False, True, False, False]) }
>>> x=ivy.Container(a=ivy.array([1,0,1,0]), b=ivy.native_array([5,2,0,3])) >>> y=ivy.logical_not(x) >>> print(y) { a: ivy.array([False, True, False, True]), b: ivy.array([False, False, True, False]) }
- Array.logical_not(self, *, out=None)[source]#
ivy.Array instance method variant of ivy.logical_not. This method simply wraps the function, and so the docstring for ivy.logical_not also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array. Should have a boolean data type.out (
Optional
[Array
], default:None
) – optional output, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the element-wise results. The returned array must have a data type of
bool
.
Examples
With
ivy.Array
input:>>> x=ivy.array([0,1,1,0]) >>> x.logical_not() ivy.array([ True, False, False, True])
>>> x=ivy.array([2,0,3,9]) >>> x.logical_not() ivy.array([False, True, False, False])
- Container.logical_not(self, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#
ivy.Container instance method variant of ivy.logical_not. This method simply wraps the function, and so the docstring for ivy.logical_not also applies to this method with minimal changes.
- Parameters:
self (
Container
) – input container. Should have a boolean data type.key_chains (
Optional
[Union
[List
[str
],Dict
[str
,str
],Container
]], default:None
) – The key-chains to apply or not apply the method to. Default isNone
.to_apply (
Union
[bool
,Container
], default:True
) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default isTrue
.prune_unapplied (
Union
[bool
,Container
], default:False
) – Whether to prune key_chains for which the function was not applied. Default isFalse
.map_sequences (
Union
[bool
,Container
], default:False
) – Whether to also map method to sequences (lists, tuples). Default isFalse
.out (
Optional
[Container
], default:None
) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container
- Returns:
ret – a container containing the evaluated result for each element in
self
. The returned container must have a data type ofbool
.
Examples
Using ‘ivy.Container’ instance
>>> x=ivy.Container(a=ivy.array([1,0,0,1]), b=ivy.array([3,1,7,0])) >>> y = x.logical_not() >>> print(y) { a: ivy.array([False, True, True, False]), b: ivy.array([False, False, False, True]) }
>>> x=ivy.Container(a=ivy.array([1,0,1,0]), b=ivy.native_array([5,2,0,3])) >>> y = x.logical_not() >>> print(y) { a: ivy.array([False, True, False, True]), b: ivy.array([False, False, True, False]) }