sparse_cross_entropy#
- ivy.sparse_cross_entropy(true, pred, /, *, axis=-1, epsilon=1e-07, reduction='mean', out=None)[source]#
Compute sparse cross entropy between logits and labels.
- Parameters:
true (
Union
[Array
,NativeArray
]) – input array containing the true labels as logits.pred (
Union
[Array
,NativeArray
]) – input array containing the predicted labels as logits.axis (
int
, default:-1
) – the axis along which to compute the cross-entropy. If axis is-1
, the cross-entropy will be computed along the last dimension. Default:-1
.epsilon (
float
, default:1e-07
) – a float in [0.0, 1.0] specifying the amount of smoothing when calculating the loss. If epsilon is0
, no smoothing will be applied. Default:1e-7
.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – The sparse cross-entropy loss between the given distributions
Examples
With
ivy.Array
input:>> x = ivy.array([2]) >> y = ivy.array([0.1, 0.1, 0.7, 0.1]) >> print(ivy.sparse_cross_entropy(x, y)) ivy.array([0.08916873])
>>> x = ivy.array([3]) >>> y = ivy.array([0.1, 0.1, 0.7, 0.1]) >>> print(ivy.cross_entropy(x, y)) ivy.array(5.44832274)
>>> x = ivy.array([2,3]) >>> y = ivy.array([0.1, 0.1]) >>> print(ivy.cross_entropy(x, y)) ivy.array(5.75646281)
With
ivy.NativeArray
input:>>> x = ivy.native_array([4]) >>> y = ivy.native_array([0.1, 0.2, 0.1, 0.1, 0.5]) >>> print(ivy.sparse_cross_entropy(x, y)) ivy.array([0.13862944])
With
ivy.Container
input:>>> x = ivy.Container(a=ivy.array([4])) >>> y = ivy.Container(a=ivy.array([0.1, 0.2, 0.1, 0.1, 0.5])) >>> print(ivy.sparse_cross_entropy(x, y)) { a: ivy.array([0.13862944]) }
With a mix of
ivy.Array
andivy.NativeArray
inputs:>>> x = ivy.array([0]) >>> y = ivy.native_array([0.1, 0.2, 0.6, 0.1]) >>> print(ivy.sparse_cross_entropy(x,y)) ivy.array([0.57564628])
With a mix of
ivy.Array
andivy.Container
inputs:>>> x = ivy.array([0]) >>> y = ivy.Container(a=ivy.array([0.1, 0.2, 0.6, 0.1])) >>> print(ivy.sparse_cross_entropy(x,y)) { a: ivy.array([0.57564628]) }
Instance Method Examples
With
ivy.Array
input:>>> x = ivy.array([2]) >>> y = ivy.array([0.1, 0.1, 0.7, 0.1]) >>> print(x.sparse_cross_entropy(y)) ivy.array([0.08916873])
With
ivy.Container
input:>>> x = ivy.Container(a=ivy.array([2])) >>> y = ivy.Container(a=ivy.array([0.1, 0.1, 0.7, 0.1])) >>> print(x.sparse_cross_entropy(y)) { a: ivy.array([0.08916873]) }
- Array.sparse_cross_entropy(self, pred, /, *, axis=-1, epsilon=1e-07, reduction='mean', out=None)[source]#
ivy.Array instance method variant of ivy.sparse_cross_entropy. This method simply wraps the function, and so the docstring for ivy.sparse_cross_entropy also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array containing the true labels as logits.pred (
Union
[Array
,NativeArray
]) – input array containing the predicted labels as logits.axis (
int
, default:-1
) – the axis along which to compute the cross-entropy. If axis is-1
, the cross-entropy will be computed along the last dimension. Default:-1
. epsilon a float in [0.0, 1.0] specifying the amount of smoothing when calculating the loss. If epsilon is0
, no smoothing will be applied. Default:1e-7
.epsilon (
float
, default:1e-07
) – a float in [0.0, 1.0] specifying the amount of smoothing when calculating the loss. If epsilon is0
, no smoothing will be applied. Default:1e-7
.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – The sparse cross-entropy loss between the given distributions.
Examples
>>> x = ivy.array([1 , 1, 0]) >>> y = ivy.array([0.7, 0.8, 0.2]) >>> z = x.sparse_cross_entropy(y) >>> print(z) ivy.array([0.07438118, 0.07438118, 0.11889165])
- Container.sparse_cross_entropy(self, pred, /, *, axis=-1, epsilon=1e-07, reduction='mean', key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#
ivy.Container instance method variant of ivy.sparse_cross_entropy. This method simply wraps the function, and so the docstring for ivy.sparse_cross_entropy also applies to this method with minimal changes.
- Parameters:
self (
Container
) – input container containing the true labels as logits.pred (
Union
[Container
,Array
,NativeArray
]) – input array or container containing the predicted labels as logits.axis (
Union
[int
,Container
], default:-1
) – the axis along which to compute the cross-entropy. If axis is-1
, the cross-entropy will be computed along the last dimension. Default:-1
. epsilon a float in [0.0, 1.0] specifying the amount of smoothing when calculating the loss. If epsilon is0
, no smoothing will be applied. Default:1e-7
.key_chains (
Optional
[Union
[List
[str
],Dict
[str
,str
],Container
]], default:None
) – The key-chains to apply or not apply the method to. Default isNone
.to_apply (
Union
[bool
,Container
], default:True
) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default isTrue
.prune_unapplied (
Union
[bool
,Container
], default:False
) – Whether to prune key_chains for which the function was not applied. Default isFalse
.map_sequences (
Union
[bool
,Container
], default:False
) – Whether to also map method to sequences (lists, tuples). Default isFalse
.out (
Optional
[Container
], default:None
) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container
- Returns:
ret – The sparse cross-entropy loss between the given distributions.
Examples
>>> x = ivy.Container(a=ivy.array([1, 0, 0]),b=ivy.array([0, 0, 1])) >>> y = ivy.Container(a=ivy.array([0.6, 0.2, 0.3]),b=ivy.array([0.8, 0.2, 0.2])) >>> z = x.sparse_cross_entropy(y) >>> print(z) { a: ivy.array([0.53647929, 0.1702752, 0.1702752]), b: ivy.array([0.07438118, 0.07438118, 0.53647929]) }