trapz#
- ivy.trapz(y, /, *, x=None, dx=1.0, axis=-1, out=None)[source]#
Integrate along the given axis using the composite trapezoidal rule.
If x is provided, the integration happens in sequence along its elements - they are not sorted..
- Parameters:
y (
Array
) – The array that should be integrated.x (
Optional
[Array
], default:None
) – The sample points corresponding to the input array values. If x is None, the sample points are assumed to be evenly spaced dx apart. The default is None.dx (
float
, default:1.0
) – The spacing between sample points when x is None. The default is 1.axis (
int
, default:-1
) – The axis along which to integrate.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to.
- Return type:
- Returns:
ret – Definite integral of n-dimensional array as approximated along a single axis by the trapezoidal rule. If the input array is a 1-dimensional array, then the result is a float. If n is greater than 1, then the result is an n-1 dimensional array.
Examples
>>> y = ivy.array([1, 2, 3]) >>> ivy.trapz([1,2,3]) 4.0 >>> y = ivy.array([1, 2, 3]) >>> ivy.trapz([1,2,3], x=[4, 6, 8]) 8.0 >>> y = ivy.array([1, 2, 3]) >>> ivy.trapz([1,2,3], dx=2) 8.0
- Array.trapz(self, /, *, x=None, dx=1.0, axis=-1, out=None)[source]#
ivy.Array instance method variant of ivy.trapz. This method simply wraps the function, and so the docstring for ivy.trapz also applies to this method with minimal changes.
- Parameters:
self (
Array
) – The array that should be integrated.x (
Optional
[Array
], default:None
) – The sample points corresponding to the input array values. If x is None, the sample points are assumed to be evenly spaced dx apart. The default is None.dx (
float
, default:1.0
) – The spacing between sample points when x is None. The default is 1.axis (
int
, default:-1
) – The axis along which to integrate.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to.
- Return type:
Array
- Returns:
ret – Definite integral of n-dimensional array as approximated along a single axis by the trapezoidal rule. If the input array is a 1-dimensional array, then the result is a float. If n is greater than 1, then the result is an n-1 dimensional array.
Examples
>>> y = ivy.array([1, 2, 3]) >>> ivy.trapz(y) 4.0 >>> y = ivy.array([1, 2, 3]) >>> x = ivy.array([4, 6, 8]) >>> ivy.trapz(y, x=x) 8.0 >>> y = ivy.array([1, 2, 3]) >>> ivy.trapz(y, dx=2) 8.0
- Container.trapz(self, /, *, x=None, dx=1.0, axis=-1, out=None)[source]#
ivy.Container instance method variant of ivy.trapz. This method simply wraps the function, and so the docstring for ivy.trapz also applies to this method with minimal changes.
- Parameters:
self (
Container
) – The container whose arrays should be integrated.x (
Optional
[Union
[Array
,NativeArray
,Container
]], default:None
) – The sample points corresponding to the input array values. If x is None, the sample points are assumed to be evenly spaced dx apart. The default is None.dx (
Union
[float
,Container
], default:1.0
) – The spacing between sample points when x is None. The default is 1.axis (
Union
[int
,Container
], default:-1
) – The axis along which to integrate.out (
Optional
[Container
], default:None
) – optional output container, for writing the result to.
- Return type:
Container
- Returns:
ret – container including definite integrals of n-dimensional arrays as approximated along a single axis by the trapezoidal rule.
Examples
With one
ivy.Container
input: >>> y = ivy.Container(a=ivy.array((1, 2, 3)), b=ivy.array((1, 5, 10))) >>> y.trapz() {a: 4.0 b: 10.5
}