scatter_flat#
- ivy.scatter_flat(indices, updates, /, *, size=None, reduction='sum', out=None)[source]#
Scatter flat updates into a new flat array according to flat indices.
- Parameters:
indices (
Union
[Array
,NativeArray
]) – Indices for the new values to occupy.updates (
Union
[Array
,NativeArray
]) – Values for the new array to hold.size (
Optional
[int
], default:None
) – The size of the result. Default is None, in which case tensor argument out must be provided.reduction (
str
, default:'sum'
) – The reduction method for the scatter, one of ‘sum’, ‘min’, ‘max’ or ‘replace’out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – New array of given shape, with the values scattered at the indices.
This function is *nestable*, and therefore also accepts (code:’ivy.Container’)
instance in place of the argument.
Examples
With
ivy.Array
input: >>> indices = ivy.array([0, 0, 1, 0, 2, 2, 3, 3]) >>> updates = ivy.array([5, 1, 7, 2, 3, 2, 1, 3]) >>> out = ivy.array([0, 0, 0, 0, 0, 0, 0, 0]) >>> ivy.scatter_flat(indices, updates, out=out) >>> print(out) ivy.array([8, 7, 5, 4, 0, 0, 0, 0])With
ivy.Array
input: >>> indices = ivy.array([1, 0, 1, 0, 2, 2, 3, 3]) >>> updates = ivy.array([9, 2, 0, 2, 3, 2, 1, 8]) >>> size = 8 >>> print(ivy.scatter_flat(indices, updates, size=size)) ivy.array([2, 0, 2, 8, 0, 0, 0, 0])With
ivy.Container
andivy.Array
input: >>> indices = ivy.array([1, 0, 1, 0, 2, 2, 3, 3]) >>> updates = ivy.Container(a=ivy.array([9, 2, 0, 2, 3, 2, 1, 8]), … b=ivy.array([5, 1, 7, 2, 3, 2, 1, 3])) >>> size = 8 >>> print(ivy.scatter_flat(indices, updates, size=size)) {a: ivy.array([2, 0, 2, 8, 0, 0, 0, 0]), b: ivy.array([2, 7, 2, 3, 0, 0, 0, 0])
}
With
ivy.Container
input: >>> indices = ivy.Container(a=ivy.array([1, 0, 1, 0, 2, 2, 3, 3]), … b=ivy.array([0, 0, 1, 0, 2, 2, 3, 3])) >>> updates = ivy.Container(a=ivy.array([9, 2, 0, 2, 3, 2, 1, 8]), … b=ivy.array([5, 1, 7, 2, 3, 2, 1, 3])) >>> size = 8 >>> print(ivy.scatter_flat(indices, updates, size=size)) {a: ivy.array([2, 0, 2, 8, 0, 0, 0, 0]), b: ivy.array([2, 7, 2, 3, 0, 0, 0, 0])
}
- Array.scatter_flat(self, updates, /, *, size=None, reduction='sum', out=None)[source]#
ivy.Array instance method variant of ivy.scatter_flat. This method simply wraps the function, and so the docstring for ivy.scatter_flat also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array containing the indices where the new values will occupyupdates (
Union
[Array
,NativeArray
]) – Values for the new array to hold.size (
Optional
[int
], default:None
) – The size of the result. Default is None, in which case tensor argument out must be provided.reduction (
str
, default:'sum'
) – The reduction method for the scatter, one of ‘sum’, ‘min’, ‘max’ or ‘replace’out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – New array of given shape, with the values scattered at the indices.
Examples
With
ivy.Array
input: >>> indices = ivy.array([0, 0, 1, 0, 2, 2, 3, 3]) >>> updates = ivy.array([5, 1, 7, 2, 3, 2, 1, 3]) >>> size = 8 >>> out = indices.scatter_flat(updates, size=size) >>> print(out) ivy.array([2, 7, 2, 3, 0, 0, 0, 0])With
ivy.Array
input: >>> indices = ivy.array([0, 0, 1, 0, 2, 2, 3, 3]) >>> updates = ivy.array([5, 1, 7, 2, 3, 2, 1, 3]) >>> out = ivy.array([0, 0, 0, 0, 0, 0, 0, 0]) >>> indices.scatter_flat(updates, out=out) >>> print(out) ivy.array([8, 7, 5, 4, 0, 0, 0, 0])
- Container.scatter_flat(self, updates, /, *, size=None, reduction='sum', key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#
ivy.Container instance method variant of ivy.scatter_flat. This method simply wraps the function, and so the docstring for ivy.scatter_flat also applies to this method with minimal changes.
- Parameters:
self (
Container
) – Index array or container.updates (
Union
[Array
,NativeArray
,Container
]) – values to update input tensor withsize (
Optional
[Union
[int
,Container
]], default:None
) – The size of the result. Default is None, in which case tensor argument out must be provided.reduction (
Union
[str
,Container
], default:'sum'
) – The reduction method for the scatter, one of ‘sum’, ‘min’, ‘max’ or ‘replace’key_chains (
Optional
[Union
[List
[str
],Dict
[str
,str
],Container
]], default:None
) – The key-chains to apply or not apply the method to. Default isNone
.to_apply (
Union
[bool
,Container
], default:True
) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default isTrue
.prune_unapplied (
Union
[bool
,Container
], default:False
) – Whether to prune key_chains for which the function was not applied. Default isFalse
.map_sequences (
Union
[bool
,Container
], default:False
) – Whether to also map method to sequences (lists, tuples). Default isFalse
.out (
Optional
[Container
], default:None
) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container
- Returns:
ret – New container of given shape, with the values updated at the indices.
Examples
With
ivy.Container
input: >>> indices = ivy.Container(a=ivy.array([1, 0, 1, 0, 2, 2, 3, 3]), … b=ivy.array([0, 0, 1, 0, 2, 2, 3, 3])) >>> updates = ivy.Container(a=ivy.array([9, 2, 0, 2, 3, 2, 1, 8]), … b=ivy.array([5, 1, 7, 2, 3, 2, 1, 3])) >>> size = 8 >>> print(ivy.scatter_flat(indices, updates, size=size)) {a: ivy.array([2, 0, 2, 8, 0, 0, 0, 0]), b: ivy.array([2, 7, 2, 3, 0, 0, 0, 0])
}