l1_normalize#
- ivy.l1_normalize(x, /, *, axis=None, out=None)[source]#
Normalize the input array along the given axis to have L1 norm equal to 1.
- Parameters:
x (
Union
[Array
,NativeArray
]) – Input array.axis (
Optional
[Union
[int
,Tuple
[int
,...
]]], default:None
) –- Axis or axes along which to normalize. If
None
, the whole array is normalized.
- Axis or axes along which to normalize. If
out (
Optional
[Array
], default:None
) –- Optional output array, for writing the result to.
It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – The normalized array.
Examples
>>> x = ivy.array([[1., 2.], [3., 4.]]) >>> y = ivy.l1_normalize(x, axis=1) >>> print(y) ivy.array([[0.33333334, 1.33333337], [1.28571439, 2.28571439]])
- Array.l1_normalize(self, axis=None, out=None)[source]#
Normalize the array to have unit L1 norm.
- Parameters:
self (
Array
) – Input array.axis (
Optional
[Union
[int
,Tuple
[int
,...
]]], default:None
) – Axis or axes along which to normalize. IfNone
, the whole array is normalized.out (
Optional
[Array
], default:None
) – Optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – The normalized array.
Examples
>>> x = ivy.array([[1., 2.], [3., 4.]]) >>> y = x.l1_normalize(axis=1) >>> print(y) ivy.array([[0.33333334, 1.33333337], [1.28571439, 2.28571439]])
- Container.l1_normalize(self, axis=None, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#
ivy.Container instance method variant of ivy.l1_normalize. This method simply wraps the function, and so the docstring for ivy.l1_normalize also applies to this method with minimal changes.
- Parameters:
self (
Container
) – The input container with leaves to be normalized.axis (
Optional
[Union
[int
,Container
]], default:None
) – The axis along which to normalize.key_chains (
Optional
[Union
[List
[str
],Dict
[str
,str
],Container
]], default:None
) – The key-chains to apply or not apply the method to. Default is None.to_apply (
Union
[bool
,Container
], default:True
) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.prune_unapplied (
Union
[bool
,Container
], default:False
) – Whether to prune key_chains for which the function was not applied. Default is False.map_sequences (
Union
[bool
,Container
], default:False
) – Whether to also map method to sequences (lists, tuples). Default is False.out (
Optional
[Container
], default:None
) – Optional output container, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container
- Returns:
ret – A container containing the normalized leaves.