l1_loss#
- ivy.l1_loss(input, target, /, *, reduction='mean', out=None)[source]#
Compute L1 loss (Mean Absolute Error - MAE) between targeticted and input values.
- Parameters:
input (Union[ivy.Array, ivy.NativeArray]) – Input array containing input values.
target (Union[ivy.Array, ivy.NativeArray]) – Input array containing targeted values.
reduction (str, optional) – Reduction method for the output loss. Options: “none” (no reduction), “mean” (mean of losses), “sum” (sum of losses). Default: “mean”.
out (Optional[ivy.Array], optional) – Optional output array for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ivy.Array – The L1 loss (MAE) between the given input and targeticted values.
Examples
>>> x = ivy.array([1.0, 2.0, 3.0]) >>> y = ivy.array([0.5, 2.5, 2.0]) >>> ivy.l1_loss(x, y) ivy.array(0.666) >>> a = ivy.array([[1.0, 2.0], [3.0, 4.0]]) >>> b = ivy.array([[0.5, 1.5], [2.5, 3.5]]) >>> ivy.l1_loss(a, b) ivy.array(0.5)
- Array.l1_loss(self, target, /, *, reduction='mean', out=None)[source]#
ivy.Array instance method variant of ivy.l1_loss. This method simply wraps the function, and so the docstring for ivy.l1_loss also applies to this method with minimal changes.
- Parameters:
self (
Union
[Array
,NativeArray
]) – input array containing true labels.target (
Union
[Array
,NativeArray
]) – input array containing targeted labels.reduction (
Optional
[str
], default:'mean'
) –'mean'
: The output will be averaged.'sum'
: The output will be summed.'none'
: No reduction will be applied to the output. Default:'mean'
.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – The L1 loss between the input array and the targeticted values.
Examples
>>> x = ivy.array([1.0, 2.0, 3.0]) >>> y = ivy.array([0.7, 1.8, 2.9]) >>> z = x.l1_loss(y) >>> print(z) ivy.array(0.20000000000000004)
- Container.l1_loss(self, target, /, *, reduction='mean', key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#
ivy.Container instance method variant of ivy.l1_loss. This method simply wraps the function, and so the docstring for ivy.l1_loss also applies to this method with minimal changes.
- Parameters:
self (
Container
) – input container.target (
Union
[Container
,Array
,NativeArray
]) – input array or container containing the targeticted values.reduction (
Optional
[Union
[str
,Container
]], default:'mean'
) –'mean'
: The output will be averaged.'sum'
: The output will be summed.'none'
: No reduction will be applied to the output. Default:'mean'
.key_chains (
Optional
[Union
[List
[str
],Dict
[str
,str
],Container
]], default:None
) – The key-chains to apply or not apply the method to. Default isNone
.to_apply (
Union
[bool
,Container
], default:True
) – If input, the method will be applied to key_chains, otherwise key_chains will be skipped. Default isinput
.prune_unapplied (
Union
[bool
,Container
], default:False
) – Whether to prune key_chains for which the function was not applied. Default isFalse
.map_sequences (
Union
[bool
,Container
], default:False
) – Whether to also map method to sequences (lists, tuples). Default isFalse
.out (
Optional
[Container
], default:None
) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container
- Returns:
ret – The L1 loss between the input array and the targeticted values.
Examples
>>> x = ivy.Container(a=ivy.array([1, 2, 3]), b=ivy.array([4, 5, 6])) >>> y = ivy.Container(a=ivy.array([2, 2, 2]), b=ivy.array([5, 5, 5])) >>> z = x.l1_loss(y) >>> print(z) { a: ivy.array(0.), b: ivy.array(0.) }