sigmoid#
- ivy.sigmoid(x, /, *, complex_mode='jax', out=None)[source]#
Apply the sigmoid function element-wise.
- Parameters:
x (
Union
[Array
,NativeArray
]) – input array.complex_mode (
Literal
['split'
,'magnitude'
,'jax'
], default:'jax'
) – optional specifier for how to handle complex data types. Seeivy.func_wrapper.handle_complex_input
for more detail.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the input broadcast to. default: None
- Return type:
- Returns:
ret – an array containing the sigmoid activation of each element in
x
. sigmoid activation of x is defined as 1/(1+exp(-x)).
Examples
With
ivy.Array
input:>>> x = ivy.array([-1.0, 1.0, 2.0]) >>> y = ivy.sigmoid(x) >>> print(y) ivy.array([0.2689414 , 0.7310586 , 0.88079703])
>>> x = ivy.array([-1.0, 1.0, 2.0]) >>> y = ivy.zeros(3) >>> ivy.sigmoid(x, out=y) >>> print(y) ivy.array([0.2689414 , 0.7310586 , 0.88079703])
With
ivy.Container
input:>>> x = ivy.Container(a=ivy.array([0.]), ... b=ivy.Container(c=ivy.array([1.]), ... d=ivy.array([2.]))) >>> y = ivy.sigmoid(x) >>> print(y) { a: ivy.array([0.5]), b: { c: ivy.array([0.7310586]), d: ivy.array([0.88079703]) } }
>>> x = ivy.Container(a=ivy.array([0.]), ... b=ivy.Container(c=ivy.array([1.]), ... d=ivy.array([2.]))) >>> y = ivy.Container(a=ivy.array([0.]), ... b=ivy.Container(c=ivy.array([0.]), ... d=ivy.array([0.]))) >>> ivy.sigmoid(x, out=y) >>> print(y) { a: ivy.array([0.5]), b: { c: ivy.array([0.7310586]), d: ivy.array([0.88079703]) } }
- Array.sigmoid(self, /, *, complex_mode='jax', out=None)[source]#
ivy.Array instance method variant of ivy.sigmoid.
This method simply wraps the function, and so the docstring for ivy.sigmoid also applies to this method with minimal changes.
- Parameters:
self (
Array
) – Input arraycomplex_mode (
Literal
['split'
,'magnitude'
,'jax'
], default:'jax'
) – optional specifier for how to handle complex data types. Seeivy.func_wrapper.handle_complex_input
for more detail.out (
Optional
[Array
], default:None
) – optional output array for writing the result to. It must have the same shape the input broadcast to default: None
- Return type:
Array
- Returns:
ret – an array with the sigmoid activation function applied element-wise.
Examples
>>> x = ivy.array([-1., 1., 2.]) >>> y = x.sigmoid() >>> print(y) ivy.array([0.269, 0.731, 0.881])
- Container.sigmoid(self, /, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, complex_mode='jax', out=None)[source]#
ivy.Container instance method variant of ivy.sigmoid. This method simply wraps the function, and so the docstring for ivy.sigmoid also applies to this method with minimal changes.
- Parameters:
self (
Container
) – input container.key_chains (
Optional
[Union
[List
[str
],Dict
[str
,str
],Container
]], default:None
) – The key-chains to apply or not apply the method to. Default isNone
.to_apply (
Union
[bool
,Container
], default:True
) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default isTrue
.prune_unapplied (
Union
[bool
,Container
], default:False
) – Whether to prune key_chains for which the function was not applied. Default isFalse
.map_sequences (
Union
[bool
,Container
], default:False
) – Whether to also map method to sequences (lists, tuples). Default isFalse
.complex_mode (
Literal
['split'
,'magnitude'
,'jax'
], default:'jax'
) – optional specifier for how to handle complex data types. Seeivy.func_wrapper.handle_complex_input
for more detail.out (
Optional
[Container
], default:None
) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container
- Returns:
ret – a container with the sigmoid unit function applied element-wise.
Examples
>>> x = ivy.Container(a=ivy.array([-1., 1., 2.]), b=ivy.array([0.5, 0., -0.1])) >>> y = x.sigmoid() >>> print(y) { a: ivy.array([0.2689414, 0.7310586, 0.88079703]), b: ivy.array([0.62245935, 0.5, 0.4750208]) }