softmax#
- ivy.softmax(x, /, *, axis=None, complex_mode='jax', out=None)[source]#
Apply the softmax function element-wise.
- Parameters:
x (
Union
[Array
,NativeArray
]) – Input array.axis (
Optional
[int
], default:None
) – The dimension softmax would be performed on. The default isNone
.complex_mode (
Literal
['split'
,'magnitude'
,'jax'
], default:'jax'
) – optional specifier for how to handle complex data types. Seeivy.func_wrapper.handle_complex_input
for more detail.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – The input array with softmax applied element-wise.
Examples
With
ivy.Array
input:>>> x = ivy.array([1.0, 0, 1.0]) >>> y = ivy.softmax(x) >>> print(y) ivy.array([0.422, 0.155, 0.422])
>>> x = ivy.array([[1.1, 2.2, 3.3], ... [4.4, 5.5, 6.6]]) >>> y = ivy.softmax(x, axis = 1) >>> print(y) ivy.array([[0.0768, 0.231 , 0.693 ], [0.0768, 0.231 , 0.693 ]])
- Array.softmax(self, /, *, axis=None, complex_mode='jax', out=None)[source]#
ivy.Array instance method variant of ivy.softmax. This method simply wraps the function, and so the docstring for ivy.softmax also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array.axis (
Optional
[int
], default:None
) – the axis or axes along which the softmax should be computedcomplex_mode (
Literal
['split'
,'magnitude'
,'jax'
], default:'jax'
) – optional specifier for how to handle complex data types. Seeivy.func_wrapper.handle_complex_input
for more detail.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array with the softmax activation function applied element-wise.
Examples
>>> x = ivy.array([1.0, 0, 1.0]) >>> y = x.softmax() >>> print(y) ivy.array([0.422, 0.155, 0.422])
- Container.softmax(self, /, *, axis=None, key_chains=None, to_apply=True, prune_unapplied=False, complex_mode='jax', map_sequences=False, out=None)[source]#
ivy.Container instance method variant of ivy.softmax. This method simply wraps the function, and so the docstring for ivy.softmax also applies to this method with minimal changes.
- Parameters:
self (
Container
) – input container.axis (
Optional
[Container
], default:None
) – the axis or axes along which the softmax should be computedkey_chains (
Optional
[Union
[List
[str
],Dict
[str
,str
],Container
]], default:None
) – The key-chains to apply or not apply the method to. Default isNone
.to_apply (
Union
[bool
,Container
], default:True
) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default isTrue
.prune_unapplied (
Union
[bool
,Container
], default:False
) – Whether to prune key_chains for which the function was not applied. Default isFalse
.map_sequences (
Union
[bool
,Container
], default:False
) – Whether to also map method to sequences (lists, tuples). Default isFalse
.complex_mode (
Literal
['split'
,'magnitude'
,'jax'
], default:'jax'
) – optional specifier for how to handle complex data types. Seeivy.func_wrapper.handle_complex_input
for more detail.out (
Optional
[Container
], default:None
) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container
- Returns:
ret – a container with the softmax unit function applied element-wise.
Examples
>>> x = ivy.Container(a=ivy.array([1.0, 0]), b=ivy.array([1.3, 0, -1.0])) >>> y = x.softmax() >>> print(y) { a: ivy.array([0.7310586, 0.2689414]), b: ivy.array([0.72844321, 0.19852395, 0.07303288]) }