logsigmoid#
- ivy.logsigmoid(input, /, *, complex_mode='jax', out=None)[source]#
Apply element-wise Log-sigmoid of x.
logsigmoid(x) = log(1 / (1 + exp(-x)).
- Parameters:
input (
Union
[NativeArray
,Array
]) – Input array.complex_mode (
Literal
['split'
,'magnitude'
,'jax'
], default:'jax'
) – optional specifier for how to handle complex data types. Seeivy.func_wrapper.handle_complex_input
for more detail.
- Return type:
- Returns:
Array with same shape as input with Log-sigmoid applied to every element.
Examples
With
ivy.Array
input:>>> x = ivy.array([-1., 0., 1.]) >>> z = x.logsigmoid() >>> print(z) ivy.array([-1.31326175, -0.69314718, -0.31326169])
>>> x = ivy.array([1.5, 0.7, -2.4]) >>> z = x.logsigmoid() >>> print(z) ivy.array([-0.20141329, -0.40318608, -2.48683619])
With
ivy.Container
input:>>> x = ivy.Container(a=ivy.array([1.0, -1.2]), b=ivy.array([0.2, 0.6])) >>> x = ivy.logsigmoid(x) >>> print(x) { a: ivy.array([-0.31326169, -1.46328247]), b: ivy.array([-0.59813893, -0.43748799]) }
- Array.logsigmoid(self, complex_mode='jax')[source]#
ivy.Array instance method variant of ivy.logsigmoid. This method simply wraps the function, and so the docstring for ivy.logsigmoid also applies to this method with minimal changes.
- Parameters:
self (
Array
) – Input array.complex_mode (
Literal
['split'
,'magnitude'
,'jax'
], default:'jax'
) – optional specifier for how to handle complex data types. Seeivy.func_wrapper.handle_complex_input
for more detail.
- Return type:
Array
- Returns:
Array with same shape as input with Log-sigmoid applied to every element.
Examples
>>> x = ivy.array([-1., 2., 4., -10.]) >>> z = x.logsigmoid() >>> print(z) ivy.array([ -1.31326175, -0.126928 , -0.01814993, -10.00004578])
>>> x = ivy.array([-2.5, 1., 0, 4.5]) >>> z = x.logsigmoid() >>> print(z) ivy.array([-2.57888985, -0.31326169, -0.69314718, -0.01104775])
- Container.logsigmoid(self, /, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, complex_mode='jax')[source]#
Apply element-wise Log-sigmoid of x i.e. log(1 / (1 + exp(-x)).
- Parameters:
self (
Container
) – Input container.complex_mode (
Literal
['split'
,'magnitude'
,'jax'
], default:'jax'
) – optional specifier for how to handle complex data types. Seeivy.func_wrapper.handle_complex_input
for more detail.
- Return type:
Container
- Returns:
ret – Container with Log-sigmoid applied to the leaves.
Examples
>>> x = ivy.Container(a=ivy.array([1.0, -1.2]), b=ivy.array([0.4, -0.2])) >>> y = x.logsigmoid() >>> print(y) { a: ivy.array([-0.31326163, -1.46328258]), b: ivy.array([-0.51301527, -0.79813886]) }