sign#
- ivy.sign(x, /, *, np_variant=True, out=None)[source]#
Return an indication of the sign of a number for each element
x_i
of the input arrayx
.The sign function (also known as the signum function) of a number \(x_{i}\) is defined as
\[\begin{split}\operatorname{sign}(x_i) = \begin{cases} 0 & \textrm{if } x_i = 0 \\ \frac{x}{|x|} & \textrm{otherwise} \end{cases}\end{split}\]where \(|x_i|\) is the absolute value of \(x_i\).
Special cases
If
x_i
is less than0
, the result is-1
.If
x_i
is either-0
or+0
, the result is0
.If
x_i
is greater than0
, the result is+1
.For complex numbers
sign(x.real) + 0j if x.real != 0 else sign(x.imag) + 0j
For complex floating-point operands, let
a = real(x_i)
,b = imag(x_i)
, andIf
a
is either-0
or+0
andb
is either-0
or+0
, the result is0 + 0j
.If
a
isNaN
orb
isNaN
, the result isNaN + NaN j
.In the remaining cases, special cases must be handled according to the rules of complex number division.
- Parameters:
x (
Union
[Array
,NativeArray
]) – input array. Should have a numeric data type.np_variant (
Optional
[bool
], default:True
) – Handles complex numbers like numpy does IfTrue
,sign(x.real) + 0j if x.real != 0 else sign(x.imag) + 0j
. otherwise, For complex numbers,y = sign(x) = x / |x| if x != 0, otherwise y = 0.
out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – an array containing the evaluated result for each element in
x
. The returned array must have the same data type asx
.
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.Examples
With
ivy.Array
input:>>> x = ivy.array([8.3, -0, 6.8, 0.07]) >>> y = ivy.sign(x) >>> print(y) ivy.array([1., 0., 1., 1.])
>>> x = ivy.array([[5.78, -4., -6.9, 0], ... [-.4, 0.5, 8, -0.01]]) >>> y = ivy.sign(x) >>> print(y) ivy.array([[ 1., -1., -1., 0.], [-1., 1., 1., -1.]])
With
ivy.Container
input:>>> x = ivy.Container(a=ivy.array([0., -0.]), ... b=ivy.array([1.46, 5.9, -0.0]), ... c=ivy.array([-8.23, -4.9, -2.6, 7.4])) >>> y = ivy.sign(x) >>> print(y) { a: ivy.array([0., 0.]), b: ivy.array([1., 1., 0.]), c: ivy.array([-1., -1., -1., 1.]) }
- Array.sign(self, *, np_variant=True, out=None)[source]#
ivy.Array instance method variant of ivy.sign. This method simply wraps the function, and so the docstring for ivy.sign also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array. Should have a numeric data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the evaluated result for each element in
self
. The returned array must have the same data type asself
.
Examples
>>> x = ivy.array([5.7, -7.1, 0, -0, 6.8]) >>> y = x.sign() >>> print(y) ivy.array([ 1., -1., 0., 0., 1.])
>>> x = ivy.array([-94.2, 256.0, 0.0001, -0.0001, 36.6]) >>> y = x.sign() >>> print(y) ivy.array([-1., 1., 1., -1., 1.])
>>> x = ivy.array([[ -1., -67., 0., 15.5, 1.], [3, -45, 24.7, -678.5, 32.8]]) >>> y = x.sign() >>> print(y) ivy.array([[-1., -1., 0., 1., 1.], [ 1., -1., 1., -1., 1.]])
- Container.sign(self, *, np_variant=True, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#
ivy.Container instance method variant of ivy.sign. This method simply wraps the function, and so the docstring for ivy.sign also applies to this method with minimal changes.
- Parameters:
self (
Container
) – input container. Should have a numeric data type.key_chains (
Optional
[Union
[List
[str
],Dict
[str
,str
],Container
]], default:None
) – The key-chains to apply or not apply the method to. Default isNone
.to_apply (
Union
[bool
,Container
], default:True
) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default isTrue
.prune_unapplied (
Union
[bool
,Container
], default:False
) – Whether to prune key_chains for which the function was not applied. Default isFalse
.map_sequences (
Union
[bool
,Container
], default:False
) – Whether to also map method to sequences (lists, tuples). Default isFalse
.out (
Optional
[Container
], default:None
) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container
- Returns:
ret – a container containing the evaluated result for each element in
self
. The returned container must have the same data type asself
.
Examples
>>> x = ivy.Container(a=ivy.array([-6.7, 2.4, -8.5]), ... b=ivy.array([1.5, -0.3, 0]), ... c=ivy.array([-4.7, -5.4, 7.5])) >>> y = x.sign() >>> print(y) { a: ivy.array([-1., 1., -1.]), b: ivy.array([1., -1., 0.]), c: ivy.array([-1., -1., 1.]) }