logical_and#
- ivy.logical_and(x1, x2, /, *, out=None)[source]#
Compute the logical AND for each element x1_i of the input array x1 with the respective element x2_i of the input array x2.
- Parameters:
x1 (
Union
[Array
,NativeArray
]) – first input array. Should have a boolean data type.x2 (
Union
[Array
,NativeArray
]) – second input array. Must be compatible with x1. Should have a boolean data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – an array containing the element-wise results. The returned array must have a data type of bool.
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the argumentsExamples
With
ivy.Array
input:>>> x = ivy.array([True, True, False]) >>> y = ivy.array([True, False, True]) >>> print(ivy.logical_and(x, y)) ivy.array([True,False,False])
>>> ivy.logical_and(x, y, out=y) >>> print(y) ivy.array([True,False,False])
With
ivy.Container
input:>>> x = ivy.Container(a=ivy.array([False, True, True]), ... b=ivy.array([True, False, False])) >>> y = ivy.Container(a=ivy.array([True, True, False]), ... b=ivy.array([False, False, True])) >>> print(ivy.logical_and(y, x)) { a: ivy.array([False, True, False]), b: ivy.array([False, False, False]) }
>>> ivy.logical_and(y, x, out=y) >>> print(y) { a: ivy.array([False, True, False]), b: ivy.array([False, False, False]) }
>>> x = ivy.Container(a=ivy.array([False, True, True]), ... b=ivy.array([True, False, False])) >>> y = ivy.array([True, False, True]) >>> print(ivy.logical_and(y, x)) { a: ivy.array([False, False, True]), b: ivy.array([True, False, False]) }
>>> x = ivy.Container(a=ivy.array([False, True, True]), ... b=ivy.array([True, False, False])) >>> y = ivy.array([True, False, True]) >>> ivy.logical_and(y, x, out=x) >>> print(x) { a: ivy.array([False, False, True]), b: ivy.array([True, False, False]) }
- Array.logical_and(self, x2, *, out=None)[source]#
ivy.Array instance method variant of ivy.logical_and. This method simply wraps the function, and so the docstring for ivy.logical_and also applies to this method with minimal changes.
- Parameters:
self (
Array
) – first input array. Should have a boolean data type.x2 (
Union
[Array
,NativeArray
]) – second input array. Must be compatible withself
(see broadcasting). Should have a boolean data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the element-wise results. The returned array must have a data type of
bool
.
Examples
Using ‘ivy.Array’ instance:
>>> x = ivy.array([True, False, True, False]) >>> y = ivy.array([True, True, False, False]) >>> z = x.logical_and(y) >>> print(z) ivy.array([True, False, False, False])
- Container.logical_and(self, x2, /, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#
ivy.Container instance method variant of ivy.logical_and. This method simply wraps the function, and so the docstring for ivy.logical_and also applies to this method with minimal changes.
- Parameters:
self (
Container
) – input array or container. Should have a boolean data type.x2 (
Union
[Container
,Array
,NativeArray
]) – input array or container. Must be compatible withself
(see broadcasting). Should have a boolean data type.key_chains (
Optional
[Union
[List
[str
],Dict
[str
,str
],Container
]], default:None
) – The key-chains to apply or not apply the method to. Default isNone
.to_apply (
Union
[bool
,Container
], default:True
) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default isTrue
.prune_unapplied (
Union
[bool
,Container
], default:False
) – Whether to prune key_chains for which the function was not applied. Default isFalse
.map_sequences (
Union
[bool
,Container
], default:False
) – Whether to also map method to sequences (lists, tuples). Default isFalse
.out (
Optional
[Container
], default:None
) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container
- Returns:
ret – a container containing the element-wise results. The returned container must have a data type of
bool
.
Examples
Using ‘ivy.Container’ instance
>>> a = ivy.Container(a=ivy.array([True, False, True, False])) >>> b = ivy.Container(a=ivy.array([True, True, False, False])) >>> w = a.logical_and(b) >>> print(w) { a:ivy.array([True,False,False,False]) }
>>> j = ivy.Container(a=ivy.array([True, True, False, False])) >>> m = ivy.array([False, True, False, True]) >>> x = j.logical_and(m) >>> print(x) { a:ivy.array([False,True,False,False]) }
>>> k = ivy.Container(a=ivy.array([True, False, True]), ... b=ivy.array([True, False, False])) >>> l = ivy.Container(a=ivy.array([True, True, True]), ... b=ivy.array([False, False, False])) >>> z = k.logical_and(l) >>> print(z) { a:ivy.array([True,False,True]), b:ivy.array([False,False,False]) }