fft#
- ivy.fft(x, dim, /, *, norm='backward', n=None, out=None)[source]#
Compute the one dimensional discrete Fourier transform given input at least 1-D input x.
- Parameters:
x (
Union
[Array
,NativeArray
]) – Input volume […,d_in,…], where d_in indicates the dimension that needs FFT.dim (
int
) – The dimension along which to take the one dimensional FFT.norm (
str
, default:'backward'
) – Optional argument, “backward”, “ortho” or “forward”. Defaults to be “backward”. “backward” indicates no normalization. “ortho” indicates normalization by $frac{1}{sqrt{n}}$. “forward” indicates normalization by $frac{1}{n}$.n (
Optional
[Union
[int
,Tuple
[int
]]], default:None
) – Optional argument indicating the sequence length, if given, the input would be padded with zero or truncated to length n before performing FFT. Should be a integer greater than 1.out (
Optional
[Array
], default:None
) – Optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – The result of the FFT operation.
Examples
>>> ivy.fft(np.exp(2j * np.pi * np.arange(8) / 8), 0) ivy.array([-3.44509285e-16+1.14423775e-17j, 8.00000000e+00-8.11483250e-16j, 2.33486982e-16+1.22464680e-16j, 0.00000000e+00+1.22464680e-16j, 9.95799250e-17+2.33486982e-16j, 0.00000000e+00+7.66951701e-17j, 1.14423775e-17+1.22464680e-16j, 0.00000000e+00+1.22464680e-16j]) >>> ivy.fft(np.exp(2j * np.pi * np.arange(8) / 8), 0, n=16) ivy.array([-3.44509285e-16+1.14423775e-17j, 1.00000000e+00+5.02733949e+00j, 8.00000000e+00-8.11483250e-16j, 1.00000000e+00-5.02733949e+00j, 2.33486982e-16+1.22464680e-16j, 1.00000000e+00-1.49660576e+00j, 0.00000000e+00+1.22464680e-16j, 1.00000000e+00-6.68178638e-01j, 9.95799250e-17+2.33486982e-16j, 1.00000000e+00-1.98912367e-01j, 0.00000000e+00+7.66951701e-17j, 1.00000000e+00+1.98912367e-01j, 1.14423775e-17+1.22464680e-16j, 1.00000000e+00+6.68178638e-01j, 0.00000000e+00+1.22464680e-16j, 1.00000000e+00+1.49660576e+00j]) >>> ivy.fft(np.exp(2j * np.pi * np.arange(8) / 8), 0, norm="ortho") ivy.array([-1.21802426e-16+4.04549134e-18j, 2.82842712e+00-2.86902654e-16j, 8.25501143e-17+4.32978028e-17j, 0.00000000e+00+4.32978028e-17j, 3.52068201e-17+8.25501143e-17j, 0.00000000e+00+2.71158374e-17j, 4.04549134e-18+4.32978028e-17j, 0.00000000e+00+4.32978028e-17j])
- Array.fft(self, dim, /, *, norm='backward', n=None, out=None)[source]#
ivy.Array instance method variant of ivy.ifft. This method simply wraps the function, and so the docstring for ivy.ifft also applies to this method with minimal changes.
- Parameters:
self (
Array
) – Input volume […,d_in,…], where d_in indicates the dimension that needs FFT.dim (
int
) – The dimension along which to take the one dimensional FFT.norm (
str
, default:'backward'
) – Optional argument, “backward”, “ortho” or “forward”. Defaults to be “backward”. “backward” indicates no normalization. “ortho” indicates normalization by 1/sqrt(n). “forward” indicates normalization by 1/n.n (
Optional
[Union
[int
,Tuple
[int
]]], default:None
) – Optional argument indicating the sequence length, if given, the input would be padded with zero or truncated to length n before performing FFT. Should be a integer greater than 1.out (
Optional
[Array
], default:None
) – Optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – Array containing the transformed input.
Examples
>>> a = ivy.array((np.exp(2j * np.pi * np.arange(8) / 8))) >>> a.fft(0) ivy.array([-3.44509285e-16+1.14423775e-17j, 8.00000000e+00-8.11483250e-16j, 2.33486982e-16+1.22464680e-16j, 0.00000000e+00+1.22464680e-16j, 9.95799250e-17+2.33486982e-16j, 0.00000000e+00+7.66951701e-17j, 1.14423775e-17+1.22464680e-16j, 0.00000000e+00+1.22464680e-16j])
- Container.fft(self, dim, /, *, norm='backward', n=None, out=None, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#
ivy.Container instance method variant of ivy.fft. This method simply wraps the function, and so the docstring for ivy.fft also applies to this method with minimal changes.
- Parameters:
self (
Container
) – Container containing input volumes […,d_in,…], where d_in indicates the dimension that needs FFT.dim (
Union
[int
,Container
]) – The dimension along which to take the one dimensional FFT.norm (
Union
[str
,Container
], default:'backward'
) – Optional argument, “backward”, “ortho” or “forward”. Defaults to be “backward”. “backward” indicates no normalization. “ortho” indicates normalization by 1/sqrt(n). “forward” indicates normalization by 1/n.n (
Optional
[Union
[int
,Tuple
[int
],Container
]], default:None
) – Optional argument indicating the sequence length, if given, the input would be padded with zero or truncated to length n before performing FFT. Should be a integer greater than 1.out (
Optional
[Union
[Array
,Container
]], default:None
) – Optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container
- Returns:
ret – Container containing the transformed inputs.
Examples
>>> a = ivy.array(np.array([ 6.+0.j, -2.+2.j, -2.+0.j, -2.-2.j])) >>> b = ivy.array(np.exp(2j * np.pi * np.arange(8) / 8)) >>> c = ivy.Container(a=a, b=b) >>> dims = ivy.Container(a=0, b=0) >>> c.fft(dims) { a: ivy.array([0.+0.j, 12.+0.j, 8.+0.j, 4.+0.j]), b: ivy.array([-3.44509285e-16+1.14423775e-17j, 8.00000000e+00-8.11483250e-16j, 2.33486982e-16+1.22464680e-16j, 0.00000000e+00+1.22464680e-16j, 9.95799250e-17+2.33486982e-16j, 0.00000000e+00+7.66951701e-17j, 1.14423775e-17+1.22464680e-16j, 0.00000000e+00+1.22464680e-16j]) }