dropout1d#
- ivy.dropout1d(x, prob, /, *, training=True, data_format='NWC', out=None)[source]#
Randomly zero out entire channels with probability prob using samples from a Bernoulli distribution and the remaining channels are scaled by (1/1-prob). In this case, dropout1d performs a channel-wise dropout but assumes a channel is a 1D feature map.
- Parameters:
x (
Union
[Array
,NativeArray
]) – a 2D or 3D input array. Should have a floating-point data type.prob (
float
) – probability of a channel to be zero-ed.training (
bool
, default:True
) – controls whether dropout1d is performed during training or ignored during testing.data_format (
str
, default:'NWC'
) – “NWC” or “NCW”. Defaults to “NWC”.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret –
- an array with some channels zero-ed and the rest of channels are
scaled by (1/1-prob).
Both the description and the type hints above assumes an array input for simplicity,
but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.
Examples
With
ivy.Array
input:>>> x = ivy.array([1, 1, 1]).reshape([1, 1, 3]) >>> y = ivy.dropout1d(x, 0.5) >>> print(y) ivy.array([[[2., 0, 2.]]])
>>> x = ivy.array([1, 1, 1]).reshape([1, 1, 3]) >>> y = ivy.dropout1d(x, 1, training=False, data_format="NCW") >>> print(y) ivy.array([[[1, 1, 1]]])
With one
ivy.Container
input: >>> x = ivy.Container(a=ivy.array([100, 200, 300]).reshape([1, 1, 3]), … b=ivy.array([400, 500, 600]).reshape([1, 1, 3])) >>> y = ivy.dropout1d(x, 0.5) >>> print(y) {a: ivy.array([[[200., 400., 0.]]]), b: ivy.array([[[0., 0., 0.]]])
}
- Array.dropout1d(self, prob, /, *, training=True, data_format='NWC', out=None)[source]#
ivy.Array instance method variant of ivy.dropout1d. This method simply wraps the function, and so the docstring for ivy.dropout1d also applies to this method with minimal changes.
- Parameters:
self (
Array
) – The input array x to perform dropout on.prob (
float
) – The probability of zeroing out each array element, float between 0 and 1.training (
bool
, default:True
) – Turn on dropout if training, turn off otherwise. Default isTrue
.data_format (
str
, default:'NWC'
) – “NWC” or “NCW”. Default is"NWC"
.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – Result array of the output after dropout is performed.
Examples
>>> x = ivy.array([1, 1, 1]).reshape([1, 1, 3]) >>> y = x.dropout1d(0.5) >>> print(y) ivy.array([[[2., 0, 2.]]])
- Container.dropout1d(self, prob, /, *, training=True, data_format='NWC', key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#
ivy.Container instance method variant of ivy.dropout1d. This method simply wraps the function, and so the docstring for ivy.dropout1d also applies to this method with minimal changes.
- Parameters:
self (
Container
) – The input container to perform dropout on.prob (
Union
[float
,Container
]) – The probability of zeroing out each array element, float between 0 and 1.training (
Union
[bool
,Container
], default:True
) – Turn on dropout if training, turn off otherwise. Default isTrue
.data_format (
Union
[str
,Container
], default:'NWC'
) – “NWC” or “NCW”. Default is"NCW"
.key_chains (
Optional
[Union
[List
[str
],Dict
[str
,str
],Container
]], default:None
) – The key-chains to apply or not apply the method to. Default isNone
.to_apply (
Union
[bool
,Container
], default:True
) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default isTrue
.prune_unapplied (
Union
[bool
,Container
], default:False
) – Whether to prune key_chains for which the function was not applied. Default isFalse
.map_sequences (
Union
[bool
,Container
], default:False
) – Whether to also map method to sequences (lists, tuples). Default isFalse
.out (
Optional
[Container
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container
- Returns:
ret – Result container of the output after dropout is performed.
Examples
>>> x = ivy.Container(a=ivy.array([1, 2, 3]).reshape([1, 1, 3]), ... b=ivy.array([4, 5, 6]).reshape([1, 1, 3])) >>> y = x.dropout1d(x, 0.5) >>> print(y) { a: ivy.array([[[0., 4., 0.]]]), b: ivy.array([[[0., 0., 12.]]]) }