rank (Optional[Sequence[int]], default: None) – size of the core tensor, (len(ranks)==tensor.ndim)
if int, the same rank is used for all modes
fixed_factors (Optional[Sequence[int]], default: None) – if not None, list of modes for which to keep the factors fixed.
Only valid if a Tucker tensor is provided as init.
n_iter_max (Optional[int], default: 100) – maximum number of iteration
init (Optional[Union[Literal['svd', 'random'], TuckerTensor]], default: 'svd') – {‘svd’, ‘random’}, or TuckerTensor optional
if a TuckerTensor is provided, this is used for initialization
svd (Optional[Literal['truncated_svd']], default: 'truncated_svd') – str, default is ‘truncated_svd’
function to use to compute the SVD,
seed (Optional[int], default: None) – Used to create a random seed distribution
when init == ‘random’
mask (Optional[Union[Array, NativeArray]], default: None) – array of booleans with the same shape as tensor should be 0 where
the values are missing and 1 everywhere else. Note: if tensor is
sparse, then mask should also be sparse with a fill value of 1 (or
True).
svd_mask_repeats (Optional[int], default: 5) – number of iterations for imputing the values in the SVD matrix when
mask is not None
tol (Optional[float], default: 0.0001) – tolerance: the algorithm stops when the variation in
the reconstruction error is less than the tolerance
verbose (Optional[bool], default: False) – if True, different in reconstruction errors are returned at each
iteration.
return_errors (Optional[bool], default: False) – Indicates whether the algorithm should return all reconstruction errors
and computation time of each iteration or not
Default: False
Returns:
ivy.TuckerTensor or ivy.TuckerTensor and
list of reconstruction errors if return_erros is True.
ivy.Array instance method variant of ivy.tucker. This method simply
wraps the function, and so the docstring for ivy.tucker also applies to
this method with minimal changes.
Parameters:
x – input tensor
rank (Optional[Sequence[int]], default: None) – size of the core tensor, (len(ranks)==tensor.ndim)
if int, the same rank is used for all modes
fixed_factors (Optional[Sequence[int]], default: None) – if not None, list of modes for which to keep the factors fixed.
Only valid if a Tucker tensor is provided as init.
n_iter_max (Optional[int], default: 100) – maximum number of iteration
init (Optional[Union[Literal['svd', 'random'], TuckerTensor]], default: 'svd') – {‘svd’, ‘random’}, or TuckerTensor optional
if a TuckerTensor is provided, this is used for initialization
svd (Optional[Literal['truncated_svd']], default: 'truncated_svd') – str, default is ‘truncated_svd’
function to use to compute the SVD,
seed (Optional[int], default: None) – Used to create a random seed distribution
when init == ‘random’
mask (Optional[Union[Array, NativeArray]], default: None) – array of booleans with the same shape as tensor should be 0 where
the values are missing and 1 everywhere else. Note: if tensor is
sparse, then mask should also be sparse with a fill value of 1 (or
True).
svd_mask_repeats (Optional[int], default: 5) – number of iterations for imputing the values in the SVD matrix when
mask is not None
tol (Optional[float], default: 0.0001) – tolerance: the algorithm stops when the variation in
the reconstruction error is less than the tolerance
verbose (Optional[bool], default: False) – if True, different in reconstruction errors are returned at each
iteration.
return_errors (Optional[bool], default: False) – Indicates whether the algorithm should return all reconstruction errors
and computation time of each iteration or not
Default: False
Returns:
ivy.TuckerTensor or ivy.TuckerTensor and
list of reconstruction errors if return_erros is True.
ivy.Container static method variant of ivy.tucker. This method
simply wraps the function, and so the docstring for ivy.tucker also
applies to this method with minimal changes.
Parameters:
x – input tensor
rank (Union[Sequence[int], Container]) – size of the core tensor, (len(ranks)==tensor.ndim)
if int, the same rank is used for all modes
fixed_factors (Optional[Union[Sequence[int], Container]], default: None) – if not None, list of modes for which to keep the factors fixed.
Only valid if a Tucker tensor is provided as init.
n_iter_max (Optional[Union[int, Container]], default: 100) – maximum number of iteration
init (Optional[Union[Literal['svd', 'random'], TuckerTensor, Container]], default: 'svd') – {‘svd’, ‘random’}, or TuckerTensor optional
if a TuckerTensor is provided, this is used for initialization
svd (Optional[Union[Literal['truncated_svd'], Container]], default: 'truncated_svd') – str, default is ‘truncated_svd’
function to use to compute the SVD,
seed (Optional[Union[int, Container]], default: None) – Used to create a random seed distribution
when init == ‘random’
mask (Optional[Union[Array, NativeArray, Container]], default: None) – array of booleans with the same shape as tensor should be 0 where
the values are missing and 1 everywhere else. Note: if tensor is
sparse, then mask should also be sparse with a fill value of 1 (or
True).
svd_mask_repeats (Optional[Union[int, Container]], default: 5) – number of iterations for imputing the values in the SVD matrix when
mask is not None
tol (Optional[Union[float, Container]], default: 0.0001) – tolerance: the algorithm stops when the variation in
the reconstruction error is less than the tolerance
verbose (Optional[Union[bool, Container]], default: False) – if True, different in reconstruction errors are returned at each
iteration.
return_errors (Optional[Union[bool, Container]], default: False) – Indicates whether the algorithm should return all reconstruction errors
and computation time of each iteration or not
Default: False
Return type:
Tuple[Container, Sequence[Container]]
Returns:
Container of ivy.TuckerTensors or ivy.TuckerTensors and
container of reconstruction errors if return_errors is True.