isnan#
- ivy.isnan(x, /, *, out=None)[source]#
Test each element
x_i
of the input arrayx
to determine whether the element isNaN
.- Parameters:
- Return type:
- Returns:
ret – an array containing test results. An element
out_i
isTrue
ifx_i
isNaN
andFalse
otherwise. The returned array should have a data type ofbool
.
Special Cases
For real-valued floating-point operands,
If
x_i
isNaN
, the result isTrue
.In the remaining cases, the result is
False
.
For complex floating-point operands, let
a = real(x_i)
,b = imag(x_i)
, andIf
a
orb
isNaN
, the result isTrue
.In the remaining cases, the result is
False
.
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the argumentsExamples
With
ivy.Array
inputs:>>> x = ivy.array([1, 2, 3]) >>> z = ivy.isnan(x) >>> print(z) ivy.array([False, False, False])
>>> x = ivy.array([[1.1, 2.3, -3.6]]) >>> z = ivy.isnan(x) >>> print(z) ivy.array([[False, False, False]])
>>> x = ivy.array([[[1.1], [float('inf')], [-6.3]]]) >>> z = ivy.isnan(x) >>> print(z) ivy.array([[[False], [False], [False]]])
>>> x = ivy.array([[-float('nan'), float('nan'), 0.0]]) >>> z = ivy.isnan(x) >>> print(z) ivy.array([[ True, True, False]])
>>> x = ivy.array([[-float('nan'), float('inf'), float('nan'), 0.0]]) >>> z = ivy.isnan(x) >>> print(z) ivy.array([[ True, False, True, False]])
>>> x = ivy.zeros((3, 3)) >>> z = ivy.isnan(x) >>> print(z) ivy.array([[False, False, False], [False, False, False], [False, False, False]])
With
ivy.Container
input:>>> x = ivy.Container(a=ivy.array([-1, -float('nan'), 1.23]), ... b=ivy.array([float('nan'), 3.3, -4.2])) >>> z = ivy.isnan(x) >>> print(z) { a: ivy.array([False, True, False]), b: ivy.array([True, False, False]) }
- Array.isnan(self, *, out=None)[source]#
ivy.Array instance method variant of ivy.isnan. This method simply wraps the function, and so the docstring for ivy.isnan also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array. Should have a real-valued data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing test results. An element
out_i
isTrue
ifself_i
isNaN
andFalse
otherwise. The returned array should have a data type ofbool
.
Examples
With
ivy.Array
inputs:>>> x = ivy.array([1, 2, 3]) >>> x.isnan() ivy.array([False, False, False])
>>> x = ivy.array([[1.1, 2.3, -3.6]]) >>> x.isnan() ivy.array([[False, False, False]])
>>> x = ivy.array([[[1.1], [float('inf')], [-6.3]]]) >>> x.isnan() ivy.array([[[False], [False], [False]]])
>>> x = ivy.array([[-float('nan'), float('nan'), 0.0]]) >>> x.isnan() ivy.array([[ True, True, False]])
>>> x = ivy.array([[-float('nan'), float('inf'), float('nan'), 0.0]]) >>> x.isnan() ivy.array([[ True, False, True, False]])
>>> x = ivy.zeros((3, 3)) >>> x.isnan() ivy.array([[False, False, False], [False, False, False], [False, False, False]])
- Container.isnan(self, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#
ivy.Container instance method variant of ivy.isnan. This method simply wraps the function, and so the docstring for ivy.isnan also applies to this method with minimal changes.
- Parameters:
self (
Container
) – input container. Should have a real-valued data type.key_chains (
Optional
[Union
[List
[str
],Dict
[str
,str
],Container
]], default:None
) – The key-chains to apply or not apply the method to. Default isNone
.to_apply (
Union
[bool
,Container
], default:True
) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default isTrue
.prune_unapplied (
Union
[bool
,Container
], default:False
) – Whether to prune key_chains for which the function was not applied. Default isFalse
.map_sequences (
Union
[bool
,Container
], default:False
) – Whether to also map method to sequences (lists, tuples). Default isFalse
.out (
Optional
[Container
], default:None
) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container
- Returns:
ret – a container containing the test result. An element
out_i
isTrue
ifself_i
isNaN
andFalse
otherwise. The returned array should have a data type ofbool
.
Examples
>>> x = ivy.Container(a=ivy.array([-1, -float('nan'), 1.23]), ... b=ivy.array([float('nan'), 3.3, -4.2])) >>> y = x.isnan() >>> print(y) { a: ivy.array([False, True, False]), b: ivy.array([True, False, False]) }