Set#
- ivy.unique_all(x, /, *, axis=None, by_value=True)[source]#
Return the unique elements of an input array
x
, the first occurring indices for each unique element inx
, the indices from the set of unique elements that reconstructx
, and the corresponding counts for each unique element inx
.Data-dependent output shape
The shapes of two of the output arrays for this function depend on the data values in the input array; hence, array libraries which build computation graphs (e.g., JAX, Dask, etc.) may find this function difficult to implement without knowing array values. Accordingly, such libraries may choose to omit this function. See data-dependent-output-shapes section for more details.
Note
Uniqueness should be determined based on value equality (i.e.,
x_i == x_j
). For input arrays having floating-point data types, value-based equality implies the following behavior.As
nan
values compare asFalse
,nan
values should be considered distinct.As
-0
and+0
compare asTrue
, signed zeros should not be considered distinct, and the corresponding unique element will be implementation-dependent (e.g., an implementation could choose to return-0
if-0
occurs before+0
).
As signed zeros are not distinct, using
inverse_indices
to reconstruct the input array is not guaranteed to return an array having the exact same values.Each
nan
value should have a count of one, while the counts for signed zeros should be aggregated as a single count.- Parameters:
x (
Union
[Array
,NativeArray
]) – input array.axis (
Optional
[int
], default:None
) – the axis to apply unique on. If None, the unique elements of the flattenedx
are returned.by_value (
bool
, default:True
) – If False, the unique elements will be sorted in the same order that they occur in ‘’x’’. Otherwise, they will be sorted by value.
- Return type:
Tuple
[Union
[Array
,NativeArray
],Union
[Array
,NativeArray
],Union
[Array
,NativeArray
],Union
[Array
,NativeArray
]]- Returns:
ret – a namedtuple
(values, indices, inverse_indices, counts)
whose - first element must have the field namevalues
and must be an arraycontaining the unique elements of
x
. The array must have the same data type asx
.second element must have the field name
indices
and must be an array containing the indices (first occurrences) ofx
that result invalues
. The array must have the same length asvalues
and must have the default array index data type.third element must have the field name
inverse_indices
and must be an array containing the indices ofvalues
that reconstructx
. The array must have the same length as theaxis
dimension ofx
and must have the default array index data type.fourth element must have the field name
counts
and must be an array containing the number of times each unique element occurs inx
. The returned array must have the same length asvalues
and must have the default array index data type.
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.Examples
With
ivy.Array
input:>>> x = ivy.randint(0, 10, shape=(2, 2), seed=0) >>> z = ivy.unique_all(x) >>> print(z) Results(values=ivy.array([1, 2, 5, 9]), indices=ivy.array([3, 2, 1, 0]), inverse_indices=ivy.array([[3, 2], [1, 0]]), counts=ivy.array([1, 1, 1, 1]))
>>> x = ivy.array([[ 2.1141, 0.8101, 0.9298, 0.8460], ... [-1.2119, -0.3519, -0.6252, 0.4033], ... [ 0.7443, 0.2577, -0.3707, -0.0545], ... [-0.3238, 0.5944, 0.0775, -0.4327]]) >>> x[range(4), range(4)] = ivy.nan #Introduce NaN values >>> z = ivy.unique_all(x) >>> print(z) Results(values=ivy.array([-1.2119 , -0.62519997, -0.3238 , -0.0545 , 0.0775 , 0.2577 , 0.40329999, 0.59439999, 0.74430001, 0.81010002, 0.84600002, 0.92979997, nan, nan, nan, nan]), indices=ivy.array([ 4, 6, 12, 11, 14, 9, 7, 13, 8, 1, 3, 2, 0, 5, 10, 15]), inverse_indices=ivy.array([[12, 9, 11, 10], [ 0, 12, 1, 6], [ 8, 5, 12, 3], [ 2, 7, 4, 12]]), counts=ivy.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]))
- ivy.unique_counts(x, /)[source]#
Return the unique elements of an input array
x
and the corresponding counts for each unique element inx
.Data-dependent output shape
The shapes of two of the output arrays for this function depend on the data values in the input array; hence, array libraries which build computation graphs (e.g., JAX, Dask, etc.) may find this function difficult to implement without knowing array values. Accordingly, such libraries may choose to omit this function. See data-dependent-output-shapes section for more details.
Note
Uniqueness should be determined based on value equality (i.e.,
x_i == x_j
). For input arrays having floating-point data types, value-based equality implies the following behavior.As
nan
values compare asFalse
,nan
values should be considered distinct.As
-0
and+0
compare asTrue
, signed zeros should not be considered distinct, and the corresponding unique element will be implementation-dependent (e.g., an implementation could choose to return-0
if-0
occurs before+0
).
- Parameters:
x (
Union
[Array
,NativeArray
]) – input array. Ifx
has more than one dimension, the function must flattenx
and return the unique elements of the flattened array.- Return type:
- Returns:
ret – a namedtuple
(values, counts)
whosefirst element must have the field name
values
and must be an array containing the unique elements ofx
. The array must have the same data type asx
.second element must have the field name
counts
and must be an array containing the number of times each unique element occurs inx
. The returned array must have same shape asvalues
and must have the default array index data type.
.. note:: – The order of unique elements is not specified and may vary between implementations.
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.Examples
With
ivy.Array
input:>>> x = ivy.array([1,2,1,3,4,1,3]) >>> y = ivy.unique_counts(x) >>> print(y) Results(values=ivy.array([1, 2, 3, 4]), counts=ivy.array([3, 1, 2, 1]))
>>> x = ivy.asarray([[1,2,3,4],[2,3,4,5],[3,4,5,6]]) >>> y = ivy.unique_counts(x) >>> print(y) Results(values=ivy.array([1, 2, 3, 4, 5, 6]), counts=ivy.array([1, 2, 3, 3, 2, 1]))
>>> x = ivy.array([0.2,0.3,0.4,0.2,1.4,2.3,0.2]) >>> y = ivy.unique_counts(x) >>> print(y) Results(values=ivy.array([0.2 , 0.30000001, 0.40000001, 1.39999998, 2.29999995]), counts=ivy.array([3, 1, 1, 1, 1]))
With
ivy.Container
input:>>> x = ivy.Container(a=ivy.array([0., 1., 3. , 2. , 1. , 0.]), ... b=ivy.array([1, 2, 1, 3, 4, 1, 3])) >>> y = ivy.unique_counts(x) >>> print(y) { a: (list[2],<classivy.array.array.Array>shape=[4]), b: (list[2],<classivy.array.array.Array>shape=[4]) }
- ivy.unique_inverse(x, /, *, axis=None)[source]#
Return the unique elements of an input array
x
, and the indices from the set of unique elements that reconstructx
.Data-dependent output shape
The shapes of two of the output arrays for this function depend on the data values in the input array; hence, array libraries which build computation graphs (e.g., JAX, Dask, etc.) may find this function difficult to implement without knowing array values. Accordingly, such libraries may choose to omit this function. See data-dependent-output-shapes section for more details.
Note
Uniqueness should be determined based on value equality (i.e.,
x_i == x_j
). For input arrays having floating-point data types, value-based equality implies the following behavior.As
nan
values compare asFalse
,nan
values should be considered distinct.As
-0
and+0
compare asTrue
, signed zeros should not be considered distinct, and the corresponding unique element will be implementation-dependent (e.g., an implementation could choose to return-0
if-0
occurs before+0
).
As signed zeros are not distinct, using
inverse_indices
to reconstruct the input array is not guaranteed to return an array having the exact same values.- Parameters:
x (
Union
[Array
,NativeArray
]) – the array that will be inputted into the “unique_inverse” functionaxis (
Optional
[int
], default:None
) – the axis to apply unique on. If None, the unique elements of the flattenedx
are returned.
- Return type:
- Returns:
ret – a namedtuple
(values, inverse_indices)
whose - first element must have the field namevalues
and must be an arraycontaining the unique elements of
x
. The array must have the same data type asx
.second element must have the field name
inverse_indices
and must be an array containing the indices ofvalues
that reconstructx
. The array must have the same shape asx
and must have the default array index data type.
Note
The order of unique elements is not specified and may vary between implementations.
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.Examples
With
ivy.Array
input:>>> x = ivy.array([4,5,3,2,4,1,3]) >>> y = ivy.unique_inverse(x) >>> print(y) Results(values=ivy.array([1, 2, 3, 4, 5]), inverse_indices=ivy.array([3, 4, 2, 1, 3, 0, 2]))
>>> x = ivy.array([0.5,0.3,0.8,0.2,1.2,2.4,0.3]) >>> y = ivy.ivy.unique_inverse(x) >>> print(y) Results(values=ivy.array([0.2, 0.3, 0.5, 0.8, 1.2, 2.4]), inverse_indices=ivy.array([2, 1, 3, 0, 4, 5, 1]))
- ivy.unique_values(x, /, *, out=None)[source]#
Return the unique elements of an input array
x
.Data-dependent output shape
The shapes of two of the output arrays for this function depend on the data values in the input array; hence, array libraries which build computation graphs (e.g., JAX, Dask, etc.) may find this function difficult to implement without knowing array values. Accordingly, such libraries may choose to omit this function. See data-dependent-output-shapes section for more details.
Note
Uniqueness should be determined based on value equality (i.e.,
x_i == x_j
). For input arrays having floating-point data types, value-based equality implies the following behavior.As
nan
values compare asFalse
,nan
values should be considered distinct.As
-0
and+0
compare asTrue
, signed zeros should not be considered distinct, and the corresponding unique element will be implementation-dependent (e.g., an implementation could choose to return-0
if-0
occurs before+0
).
- Parameters:
x (
Union
[Array
,NativeArray
]) – input array. Ifx
has more than one dimension, the function must flattenx
and return the unique elements of the flattened array.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – an array containing the set of unique elements in
x
. The returned array must have the same data type asx
.Note
The order of unique elements is not specified and may vary between implementations.
- Raises:
TypeError – If x is not an instance of ivy.Array or ivy.NativeArray.
This function conforms to the Array API Standard. This docstring is an extension of the docstring in the standard.
Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts
ivy.Container
instances in place of any of the arguments.Examples
With
ivy.Array
inputs:>>> import ivy >>> a = ivy.array([1, 1, 2, 2, 3, 4, 4, 5]) >>> ivy.unique_values(a) array([1, 2, 3, 4, 5])
>>> b = ivy.array([1, 2, 3, 4, 5]) >>> ivy.unique_values(b) array([1, 2, 3, 4, 5])
>>> c = ivy.array([1.0, 1.0, 2.0, 2.0, 3.0, 4.0, 4.0, 5.0, -0.0, 0.0, float('nan'), ... float('nan')]) >>> ivy.unique_values(c) array([0., 1., 2., 3., 4., 5., nan, -0.])
This should have hopefully given you an overview of the set submodule, if you have any questions, please feel free to reach out on our discord!