minimum#
- ivy.minimum(x1, x2, /, *, use_where=True, out=None)[source]#
Return the min of x1 and x2 (i.e. x1 < x2 ? x1 : x2) element-wise.
- Parameters:
x1 (
Union
[Array
,NativeArray
]) – Input array containing elements to minimum threshold.x2 (
Union
[Array
,NativeArray
]) – Tensor containing minimum values, must be broadcastable to x1.use_where (
bool
, default:True
) – Whether to usewhere()
to calculate the minimum. IfFalse
, the minimum is calculated using the(x + y - |x - y|)/2
formula. Default isTrue
.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
- Returns:
ret – An array with the elements of x1, but clipped to not exceed the x2 values.
Examples
With
ivy.Array
inputs:>>> x = ivy.array([7, 9, 5]) >>> y = ivy.array([9, 3, 2]) >>> z = ivy.minimum(x, y) >>> print(z) ivy.array([7, 3, 2])
>>> x = ivy.array([1, 5, 9, 8, 3, 7]) >>> y = ivy.array([[9], [3], [2]]) >>> z = ivy.zeros((3, 6), dtype=ivy.int32) >>> ivy.minimum(x, y, out=z) >>> print(z) ivy.array([[1, 5, 9, 8, 3, 7], [1, 3, 3, 3, 3, 3], [1, 2, 2, 2, 2, 2]])
>>> x = ivy.array([[7, 3]]) >>> y = ivy.array([0, 7]) >>> ivy.minimum(x, y, out=x) >>> print(x) ivy.array([[0, 3]])
With one
ivy.Container
input:>>> x = ivy.array([[1, 3], [2, 4], [3, 7]]) >>> y = ivy.Container(a=ivy.array([1, 0,]),b=ivy.array([-5, 9])) >>> z = ivy.minimum(x, y) >>> print(z) { a: ivy.array([[1, 0], [1, 0], [1, 0]]), b: ivy.array([[-5, 3], [-5, 4], [-5, 7]]) }
With multiple
ivy.Container
inputs:>>> x = ivy.Container(a=ivy.array([1, 3, 1]), ... b=ivy.array([2, 8, 5])) >>> y = ivy.Container(a=ivy.array([1, 5, 6]), ... b=ivy.array([5, 9, 7])) >>> z = ivy.minimum(x, y) >>> print(z) { a: ivy.array([1, 3, 1]), b: ivy.array([2, 8, 5]) }
- Array.minimum(self, x2, /, *, use_where=True, out=None)[source]#
ivy.Array instance method variant of ivy.minimum. This method simply wraps the function, and so the docstring for ivy.minimum also applies to this method with minimal changes.
- Parameters:
self (
Array
) – Input array containing elements to minimum threshold.x2 (
Union
[Array
,NativeArray
]) – Tensor containing minimum values, must be broadcastable to x1.use_where (
bool
, default:True
) – Whether to usewhere()
to calculate the minimum. IfFalse
, the minimum is calculated using the(x + y - |x - y|)/2
formula. Default isTrue
.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Returns:
ret – An array with the elements of x1, but clipped to not exceed the x2 values.
Examples
With
ivy.Array
inputs:>>> x = ivy.array([7, 9, 5]) >>> y = ivy.array([9, 3, 2]) >>> z = x.minimum(y) >>> print(z) ivy.array([7, 3, 2])
>>> x = ivy.array([1, 5, 9, 8, 3, 7]) >>> y = ivy.array([[9], [3], [2]]) >>> z = ivy.zeros((3, 6)) >>> x.minimum(y, out=z) >>> print(z) ivy.array([[1.,5.,9.,8.,3.,7.], [1.,3.,3.,3.,3.,3.], [1.,2.,2.,2.,2.,2.]])
>>> x = ivy.array([[7, 3]]) >>> y = ivy.array([0, 7]) >>> x.minimum(y, out=x) >>> print(x) ivy.array([[0, 3]])
- Container.minimum(self, x2, /, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, use_where=True, out=None)[source]#
ivy.Container instance method variant of ivy.minimum. This method simply wraps the function, and so the docstring for ivy.minimum also applies to this method with minimal changes.
- Parameters:
self (
Union
[Container
,Array
,NativeArray
]) – Input array containing elements to minimum threshold.x2 (
Union
[Container
,Array
,NativeArray
]) – The other container or number to compute the minimum against.key_chains (
Optional
[Union
[List
[str
],Dict
[str
,str
],Container
]], default:None
) – The key-chains to apply or not apply the method to. Default isNone
.to_apply (
Union
[bool
,Container
], default:True
) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default isTrue
.prune_unapplied (
Union
[bool
,Container
], default:False
) – Whether to prune key_chains for which the function was not applied. Default isFalse
.map_sequences (
Union
[bool
,Container
], default:False
) – Whether to also map method to sequences (lists, tuples). Default isFalse
.use_where (
Union
[bool
,Container
], default:True
) – Whether to usewhere()
to calculate the minimum. IfFalse
, the minimum is calculated using the(x + y - |x - y|)/2
formula. Default isTrue
.out (
Optional
[Container
], default:None
) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Container
- Returns:
Container object with all sub-arrays having the minimum values computed.
Examples
With multiple
ivy.Container
inputs:>>> x = ivy.Container(a=ivy.array([1, 3, 1]), ... b=ivy.array([2, 8, 5])) >>> y = ivy.Container(a=ivy.array([1, 5, 6]), ... b=ivy.array([5, 9, 7])) >>> z = x.minimum(y) >>> print(z) { a: ivy.array([1, 3, 1]), b: ivy.array([2, 8, 5]) }